College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
Shin-Tson Wu (swu@creol.ucf.edu)
Published:31 March 2022,
Published Online:10 March 2022,
Received:21 December 2021,
Revised:17 February 2022,
Accepted:21 February 2022
Scan QR Code
Xiong, J. H. et al. Holo-imprinting polarization optics with a reflective liquid crystal hologram template. Light: Science & Applications, 11, 416-424 (2022).
Xiong, J. H. et al. Holo-imprinting polarization optics with a reflective liquid crystal hologram template. Light: Science & Applications, 11, 416-424 (2022). DOI: 10.1038/s41377-022-00746-3.
Liquid crystal polarization optics based on photoalignment technique has found pervasive applications in next-generation display platforms like virtual reality and augmented reality. Its large-scale fabrication
however
remains a big challenge due to the high demands in small feature size
fast processing speed
and defects-free alignment quality during the photoalignment process
especially for large-angle reflective devices. Here we propose a new concept of holo-imprinting based on non-contact replication of polarization pattern with a reflective liquid crystal hologram as a template. Our theoretical analysis and experimental results validate the possibility of generating a high-quality polarization pattern exploiting the self-interfering beams of reflective holograms. The method can be extended to numerous devices
from transmissive to reflective
from small angle to large angle
and from grating
lens
to freeform optics. Its widespread impact on the fabrication of liquid crystal polarization optics for advanced display and imaging systems is foreseeable.
Chen, P. et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics.Adv. Mater.32, 1903665 (2020)..
Xiong, J. H.&Wu, S. T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications.eLight1, 3 (2021)..
Nersisyan, S. R. et al. The promise of diffractive waveplates.Opt. Photonics News21, 40-45 (2010)..
Zheng, Z. G. et al. Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal.Adv. Mater.29, 1703165 (2017)..
Zheng, Z. G. et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light.Nature531, 352-356 (2016)..
Zola, R. S. et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings.Adv. Mater.31, 1806172 (2019)..
Xiong, J. H. et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives.Light. : Sci. Appl.10, 216 (2021)..
Schadt, M. et al. Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers.Jpn. J. Appl. Phys.31, 2155-2164 (1992)..
Schadt, M., Seiberle, H.&Schuster, A. Optical patterning of multi-domain liquid-crystal displays with wide viewing angles.Nature381, 212-215 (1996)..
Chigrinov, V. G., Kozenkov, V. M.&Kwok, H. S.Photoalignment of Liquid Crystalline Materials: Physics and Applications(Wiley, 2008).
Chen, A. G. S.&Brady, D. J. Surface-stabilized holography in an azo-dye-doped liquid crystal.Opt. Lett.17, 1231-1233 (1992)..
Gibbons, W. M. et al. Surface-mediated alignment of nematic liquid crystals with polarized laser light.Nature351, 49-50 (1991)..
Komanduri, R. K.&Escuti, M. J. Elastic continuum analysis of the liquid crystal polarization grating.Phys. Rev. E76, 021701 (2007)..
Sarkissian, H. et al. Periodically aligned liquid crystal: potential application for projection displays.Mol. Cryst. Liq. Cryst.451, 1-19 (2006)..
Lee, Y. H., Zhan, T.&Wu, S. T. Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase deflector.Opt. Lett.42, 4732-4735 (2017)..
Zhan, T., Lee, Y. H.&Wu, S. T. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses.Opt. Express26, 4863-4872 (2018)..
Kobashi, J., Yoshida, H.&Ozaki, M. Planar optics with patterned chiral liquid crystals.Nat. Photonics10, 389-392 (2016)..
Lee, Y. H., He, Z. Q.&Wu, S. T. Optical properties of reflective liquid crystal polarization volume gratings.J. Optical Soc. Am. B36, D9-D12 (2019)..
Lee, Y. H., Yin, K.&Wu, S. T. Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays.Opt. Express25, 27008-27014 (2017)..
Rafayelyan, M.&Brasselet, E. Bragg-Berry mirrors: reflective broadband q-plates.Opt. Lett.41, 3972-3975 (2016)..
Weng, Y. S. et al. Polarization volume grating with high efficiency and large diffraction angle.Opt. Express24, 17746-17759 (2016)..
Xiong, J. H., Chen, R.&Wu, S. T. Device simulation of liquid crystal polarization gratings.Opt. Express27, 18102-18112 (2019)..
Rafayelyan, M., Tkachenko, G.&Brasselet, E. Reflective spin-orbit geometric phase from chiral anisotropic optical media.Phys. Rev. Lett.116, 253902 (2016)..
Maimone, A.&Wang, J. R. Holographic optics for thin and lightweight virtual reality.ACM Trans. Graph.39, 67 (2020)..
Weng, Y. S. et al. Liquid-crystal-based polarization volume grating applied for full-color waveguide displays.Opt. Lett.43, 5773-5776 (2018)..
Xiong, J. H. et al. Aberration-free pupil steerable Maxwellian display for augmented reality with cholesteric liquid crystal holographic lenses.Opt. Lett.46, 1760-1763 (2021)..
Søndergaard, R. R., Hösel, M.&Krebs, F. C. Roll-to-Roll fabrication of large area functional organic materials.J. Polym. Sci. B Polym. Phys.51, 16-34 (2013)..
Souk, J. et al.Flat Panel Display Manufacturing(Wiley, 2018).
Crawford, G. P. et al. Liquid-crystal diffraction gratings using polarization holography alignment techniques.J. Appl. Phys.98, 123102 (2005)..
Kim, J. et al. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts.Optica2, 958-964 (2015)..
He, Z. Q. et al. Switchable Pancharatnam-Berry microlens array with nano-imprinted liquid crystal alignment.Opt. Lett.43, 5062-5065 (2018)..
Nersisyan, S. R. et al. Characterization of optically imprinted polarization gratings.Appl. Opt.48, 4062-4067 (2009)..
Jiang, M. et al. Low f-number diffraction-limited Pancharatnam-Berry microlenses enabled by plasmonic photopatterning of liquid crystal polymers.Adv. Mater.31, 1808028 (2019)..
Jiang, M. et al. Liquid crystal Pancharatnam-Berry micro-optical elements for laser beam shaping.Adv. Optical Mater.6, 1800961 (2018)..
Li, Y. et al. Single-exposure fabrication of tunable Pancharatnam-Berry devices using a dye-doped liquid crystal.Opt. Express27, 9054-9060 (2019)..
Zhan, T. et al. Absorption-based polarization gratings.Opt. Express28, 13907-13912 (2020)..
Harris, F. S., Sherman, G. C.&Billings, B. H. Copying holograms.Appl. Opt.5, 665-666 (1966)..
He, Z. Q., Yin, K.&Wu, S. T. Standing wave polarization holography for realizing liquid crystal Pancharatnum-Berry phase lenses.Opt. Express28, 21729-21736 (2020)..
Yun, C. J.&Song, J. K. Functional films using reactive mesogens for display applications.J. Inf. Disp.18, 119-129 (2017)..
Oh, C.&Escuti, M. J. Achromatic diffraction from polarization gratings with high efficiency.Opt. Lett.33, 2287-2289 (2008)..
Zou, J. Y. et al. Broadband wide-view Pancharatnam-Berry phase deflector.Opt. Express28, 4921-4927 (2020)..
Gao, K. et al. High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design.Opt. Express25, 6283-6293 (2017)..
Wu, H. et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system.Opt. Express20, 16684-16689 (2012)..
Jang, C. et al. Design and fabrication of freeform holographic optical elements.ACM Trans. Graph.39, 184 (2020)..
Wang, J. R. et al. Effects of humidity and surface on photoalignment of brilliant yellow.Liq. Cryst.44, 863-872 (2017)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution