1.Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
2.Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
3.Present address: Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, .Germany
Fernando D. Stefani (fernando.stefani@df.uba.ar)
Published:30 April 2022,
Published Online:25 March 2022,
Scan QR Code
Masullo, L. A. & Stefani, F. D. Multiphoton single-molecule localization by sequential excitation with light minima. Light: Science & Applications, 11, 462-465 (2022).
Masullo, L. A. & Stefani, F. D. Multiphoton single-molecule localization by sequential excitation with light minima. Light: Science & Applications, 11, 462-465 (2022). DOI: 10.1038/s41377-022-00763-2.
Using sequential excitation with a minimum of light to localize single fluorescent molecules represented a breakthrough because it delivers 1–2 nm precision with moderate photon counts
enabling tracking and super-resolution imaging with true molecular resolution. Expanding this concept to multi-photon regimes may be a useful complement to reach even higher localization precision and get deeper into biological specimens.
Orrit, M.&Bernard, J. Single pentacene molecules detected by fluorescence excitation in ap-terphenyl crystal.Phys. Rev. Lett.65, 2716–2719 (1990)..
Kador, L., Horne, D. E.&Moerner, W. E. Optical detection and probing of single dopant molecules of pentacene in ap-terphenyl host crystal by means of absorption spectroscopy.J. Phys. Chem.94, 1237–1248 (1990)..
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution.Science313, 1642–1645 (2006)..
Rust, M. J., Bates, M.&Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).Nat. Methods3, 793–795 (2006)..
Hess, S. T., Girirajan, T. P. K.&Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy.Biophys. J.91, 4258–4272 (2006)..
van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes.Nat. Protoc.6, 991–1009 (2011)..
Lelek, M. et al. Single-molecule localization microscopy.Nat. Rev. Methods Prim1, 39 (2021)..
Thompson, R. E., Larson, D. R.&Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes.Biophys. J.82, 2775–2783 (2002)..
Mortensen, K. I., Churchman, L. S., Spudich, J. A.&Flyvbjerg, H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy.Nat. Methods7, 377–381 (2010)..
Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes.Science355, 606–612 (2017)..
Gwosch, K. C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells.Nat. Methods17, 217–224 (2020)..
Masullo, L. A. et al. Pulsed Interleaved MINFLUX.Nano Lett.21, 840–846 (2021)..
Zhao, K., Xu, X.&Ren, W. et al. Two-photon MINFLUX with doubled localization precision.eLight2, 5,https://doi.org/10.1186/s43593-021-00011-xhttps://doi.org/10.1186/s43593-021-00011-x(2022)..
Winter, P. W. et al. Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples.Optica1, 181 (2014)..
Coto Hernández, I. et al. Two-photon excitation STED microscopy with time-gated detection.Sci. Rep.6, 1–9 (2016)..
Masullo, L. A., Lopez, L. F.&Stefani, F. D. A common framework for single-molecule localization using sequential structured illumination.Biophys. Rep.2, 100036 (2022)..
Enderlein, J. Tracking of fluorescent molecules diffusing within membranes.Appl. Phys. B Lasers Opt.71, 773–777 (2000)..
Levi, V., Ruan, Q., Kis-Petikova, K.&Gratton, E. Scanning FCS, a novel method for three-dimensional particle tracking.Biochem. Soc. Trans.31, 997–1000 (2003)..
Davis, L. M. et al. Four-focus single-particle position determination in a confocal microscope. inSingle Molecule Spectroscopy and Imaging III, Vol. 7571 (eds Enderlein, J., Gryczynski, Z. K.&Erdmann, R.) 757112 (2010).
Lessard, G. A., Goodwin, P. M.&Werner, J. H. Three-dimensional tracking of individual quantum dots.Appl. Phys. Lett.91, 224106 (2007)..
Dupont, A. et al. Three-dimensional single-particle tracking in live cells: news from the third dimension.N. J. Phys.15, 075008 (2013)..
Germann, J. A.&Davis, L. M. Three-dimensional tracking of a single fluorescent nanoparticle using four-focus excitation in a confocal microscope.Opt. Express22, 5641 (2014)..
Levi, V., Ruan, Q. Q.&Gratton, E. 3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells.Biophys. J.88, 2919–2928 (2005)..
Perillo, E. P. et al. Deep and high-resolution three-dimensional tracking of single particles using nonlinear and multiplexed illumination.Nat. Commun.6, 7874 (2015)..
Wehnekamp, F., Plucińska, G., Thong, R., Misgeld, T.&Lamb, D. C. C. Nanoresolution real-time 3D orbital tracking for studying mitochondrial trafficking in vertebrate axons in vivo.Elife8, 1–22 (2019)..
Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP.Nature478, 204–208 (2011)..
Brakemann, T. et al. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching.Nat. Biotechnol.29, 942–950 (2011)..
Ingaramo, M., York, A. G., Andrade, E. J., Rainey, K.&Patterson, G. H. Two-photon-like microscopy with orders-of-magnitude lower illumination intensity via two-step fluorescence.Nat. Commun.6, 8184 (2015)..
Masullo, L. A. et al. Enhanced photon collection enables four dimensional fluorescence nanoscopy of living systems.Nat. Commun.9, 3281 (2018)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution