clxguo@xidian.edu.cn
eandrew.forbes@wits.ac.za
Received:07 June 2024,
Revised:17 October 2024,
Accepted:2024-10-22,
Published Online:01 January 2025,
Scan QR Code
Mingjian Cheng, Wenjie Jiang, Lixin Guo, et al. Metrology with a twist: probing and sensing with vortex light[J]. Light: science & applications, 2025, 14(1).
Mingjian Cheng, Wenjie Jiang, Lixin Guo, et al. Metrology with a twist: probing and sensing with vortex light[J]. Light: science & applications, 2025, 14(1). DOI: 10.1038/s41377-024-01665-1.
Optical metrology is a well-established subject
dating back to early interferometry techniques utilizing light’s linear momentum through fringes. In recent years
significant interest has arisen in using vortex light with orbital angular momentum (OAM)
where the phase twists around a singular vortex in space or time. This has expanded metrology’s boundaries to encompass highly sensitive chiral interactions between light and matter
three-dimensional motion detection via linear and rotational Doppler effects
and modal approaches surpassing the resolution limit for improved profiling and quantification. The intricate structure of vortex light
combined with the integration of artificial intelligence into optical metrology
unlocks new paradigms for expanding measurement frameworks through additional degrees of freedom
offering the potential for more efficient and accurate sensing and metrological advancements. This review aims to provide a comprehensive overview of recent advances and future trends in optical metrology with structured light
specifically focusing on how utilizing vortex beams has revolutionized metrology and remote sensing
transitioning from classical to quantum approaches.
AI algorithms analyzes the OAM spectrum and intensity patterns of twisted light as it propagates through a turbulent medium
enabling the detection of the key features of the medium.
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73379289&type=middle
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73379289&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73379289&type=small
Y.J. Shen et al. , Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities . Light Sci. Appl. 8 , 90 ( 2019 ). http://doi.org/10.1038/s41377-019-0194-2 http://doi.org/10.1038/s41377-019-0194-2
A.M. Yao , M.J. Padgett , Orbital angular momentum: origins, behavior andapplications . Adv. Opt. Photonics 3 , 161 - 204 ( 2011 ). http://doi.org/10.1364/AOP.3.000161 http://doi.org/10.1364/AOP.3.000161
L. Allen et al. , Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes . Phys. Rev. A 45 , 8185 - 8189 ( 1992 ). http://doi.org/10.1103/PhysRevA.45.8185 http://doi.org/10.1103/PhysRevA.45.8185
M. Padgett , Like a speeding watch . Nature 443 , 924 - 925 ( 2006 ). http://doi.org/10.1038/443924a http://doi.org/10.1038/443924a
J.L. O’brien , Optical quantum computing . Science 318 , 1567 - 1570 ( 2007 ). http://doi.org/10.1126/science.1142892 http://doi.org/10.1126/science.1142892
A. Aiello et al. , From transverse angular momentum to photonic wheels . Nat. Photonics 9 , 789 - 795 ( 2015 ). http://doi.org/10.1038/nphoton.2015.203 http://doi.org/10.1038/nphoton.2015.203
K.Y. Bliokh , Spatiotemporal vortex pulses: angular momenta and spin-orbit interaction . Phys. Rev. Lett. 126 , 243601 ( 2021 ). http://doi.org/10.1103/PhysRevLett.126.243601 http://doi.org/10.1103/PhysRevLett.126.243601
M.V. Berry , W. Liu , No general relation between phase vortices and orbital angular momentum . J. Phys. A Math. Theor. 55 , 374001 ( 2022 ). http://doi.org/10.1088/1751-8121/ac80de http://doi.org/10.1088/1751-8121/ac80de
C. Rosales-Guzmán , B. Ndagano , A. Forbes , A review of complex vector light fields and their applications . J. Opt. 20 , 123001 ( 2018 ). http://doi.org/10.1088/2040-8986/aaeb7d http://doi.org/10.1088/2040-8986/aaeb7d
B. Jack , M.J. Padgett , S. Franke-Arnold , Angular diffraction . N. J. Phys. 10 , 103013 ( 2008 ). http://doi.org/10.1088/1367-2630/10/10/103013 http://doi.org/10.1088/1367-2630/10/10/103013
J. Pinnell , V. Rodríguez-Fajardo , A. Forbes , Probing the limits of orbital angular momentum generation and detection with spatial light modulators . J. Opt. 23 , 015602 ( 2021 ). http://doi.org/10.1088/2040-8986/abcd02 http://doi.org/10.1088/2040-8986/abcd02
L. Marrucci , C. Manzo , D. Paparo , Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media . Phys. Rev. Lett. 96 , 163905 ( 2006 ). http://doi.org/10.1103/PhysRevLett.96.163905 http://doi.org/10.1103/PhysRevLett.96.163905
R.C. Devlin et al. , Arbitrary spin-to-orbital angular momentum conversion of light . Science 358 , 896 - 901 ( 2017 ). http://doi.org/10.1126/science.aao5392 http://doi.org/10.1126/science.aao5392
A. Forbes , L. Mkhumbuza , L. Feng , Orbital angular momentum lasers . Nat. Rev. Phys. 6 , 352 - 364 ( 2024 ). http://doi.org/10.1038/s42254-024-00715-2 http://doi.org/10.1038/s42254-024-00715-2
J. Pinnell et al. , Modal analysis of structured light with spatial light modulators: a practical tutorial . J. Opt. Soc. Am. A 37 , C146 - C160 ( 2020 ). http://doi.org/10.1364/JOSAA.398712 http://doi.org/10.1364/JOSAA.398712
J.P. Torres , L. Torner , Twisted photons: applications of light with orbital angular momentum ( Wiley-VCH Verlag , Weinheim , 2011 ). http://doi.org/10.1002/9783527635368 http://doi.org/10.1002/9783527635368
G. Ruffato et al. , A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams . Sci. Rep. 8 ,( 2018 ). http://doi.org/10.1038/s41598-018-28447-1 http://doi.org/10.1038/s41598-018-28447-1
E. Otte et al. , Single-shot all-digital approach for measuring the orbital angular momentum spectrum of light . APL Photonics 7 , 086105 ( 2022 ). http://doi.org/10.1063/5.0086536 http://doi.org/10.1063/5.0086536
J. Wang et al. , Terabit free-space data transmission employing orbital angular momentum multiplexing . Nat. Photonics 6 , 488 - 496 ( 2012 ). http://doi.org/10.1038/nphoton.2012.138 http://doi.org/10.1038/nphoton.2012.138
N. Gisin , R. Thew , Quantum communication . Nat. Photonics 1 , 165 - 171 ( 2007 ). http://doi.org/10.1038/nphoton.2007.22 http://doi.org/10.1038/nphoton.2007.22
F.O. Fahrbach , P. Simon , A. Rohrbach , Microscopy with self-reconstructing beams . Nat. Photonics 4 , 780 - 785 ( 2010 ). http://doi.org/10.1038/nphoton.2010.204 http://doi.org/10.1038/nphoton.2010.204
M. Padgett , R. Bowman , Tweezers with a twist . Nat. Photonics 5 , 343 - 348 ( 2011 ). http://doi.org/10.1038/nphoton.2011.81 http://doi.org/10.1038/nphoton.2011.81
A.E. Willner et al. , Optical communications using orbital angular momentum beams . Adv. Opt. Photonics 7 , 66 - 106 ( 2015 ). http://doi.org/10.1364/AOP.7.000066 http://doi.org/10.1364/AOP.7.000066
F. Tamburini et al. , Overcoming the Rayleigh criterion limit with optical vortices . Phys. Rev. Lett. 97 , 163903 ( 2006 ). http://doi.org/10.1103/PhysRevLett.97.163903 http://doi.org/10.1103/PhysRevLett.97.163903
Y.C. Wu , H. Shroff , Faster, sharper, and deeper: structured illumination microscopy for biological imaging . Nat. Methods 15 , 1011 - 1019 ( 2018 ). http://doi.org/10.1038/s41592-018-0211-z http://doi.org/10.1038/s41592-018-0211-z
C. Rosales-Guzmán , A. Belmonte , J.P. Torres , Optical metrology techniques harness structured light beams . Photonics Spectra 51 , 56 - 59 ( 2017 ).
L. Marrucci , Spinning the Doppler effect . Science 341 , 464 - 465 ( 2013 ). http://doi.org/10.1126/science.1242097 http://doi.org/10.1126/science.1242097
W. Wang et al. , Optical vortex metrology for nanometric speckle displacement measurement . Opt. Express 14 , 120 - 127 ( 2006 ). http://doi.org/10.1364/OPEX.14.000120 http://doi.org/10.1364/OPEX.14.000120
M.P.J. Lavery et al. , Detection of a spinning object using light’s orbital angular momentum . Science 341 , 537 - 540 ( 2013 ). http://doi.org/10.1126/science.1239936 http://doi.org/10.1126/science.1239936
H. Rubinsztein-Dunlop et al. , Roadmap on structured light . J. Opt. 19 , 013001 ( 2017 ). http://doi.org/10.1088/2040-8978/19/1/013001 http://doi.org/10.1088/2040-8978/19/1/013001
G. Nienhuis , Doppler effect induced by rotating lenses . Opt. Commun. 132 , 8 - 14 ( 1996 ). http://doi.org/10.1016/0030-4018(96)00295-7 http://doi.org/10.1016/0030-4018(96)00295-7
I. Bialynicki-Birula , Z. Bialynicka-Birula , Rotational frequency shift . Phys. Rev. Lett. 78 , 2539 - 2542 ( 1997 ). http://doi.org/10.1103/PhysRevLett.78.2539 http://doi.org/10.1103/PhysRevLett.78.2539
J. Courtial et al. , Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum . Phys. Rev. Lett. 80 , 3217 - 3219 ( 1998 ). http://doi.org/10.1103/PhysRevLett.80.3217 http://doi.org/10.1103/PhysRevLett.80.3217
A. Belmonte , J.P. Torres , Optical Doppler shift with structured light . Opt. Lett. 36 , 4437 - 4439 ( 2011 ). http://doi.org/10.1364/OL.36.004437 http://doi.org/10.1364/OL.36.004437
H.L. Zhou et al. , Theoretical analysis and experimental verification on optical rotational Doppler effect . Opt. Express 24 , 10050 - 10056 ( 2016 ). http://doi.org/10.1364/OE.24.010050 http://doi.org/10.1364/OE.24.010050
F.C. Speirits et al. , Optical angular momentum in a rotating frame . Opt. Lett. 39 , 2944 - 2946 ( 2014 ). http://doi.org/10.1364/OL.39.002944 http://doi.org/10.1364/OL.39.002944
M.P.J. Lavery et al. , Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body . Optica 1 , 1 - 4 ( 2014 ). http://doi.org/10.1364/OPTICA.1.000001 http://doi.org/10.1364/OPTICA.1.000001
O. Emile , J. Emile , C. Brousseau , Rotational Doppler shift upon reflection from a right angle prism . Appl. Phys. Lett. 116 , 221102 ( 2020 ). http://doi.org/10.1063/5.0009396 http://doi.org/10.1063/5.0009396
A.Q. Anderson et al. , Observation of the rotational Doppler shift with spatially incoherent light . Opt. Express 29 , 4058 - 4066 ( 2021 ). http://doi.org/10.1364/OE.415580 http://doi.org/10.1364/OE.415580
Z.M. Li et al. , Direction-sensitive detection of a spinning object using dual-frequency vortex light . Opt. Express 29 , 7453 - 7463 ( 2021 ). http://doi.org/10.1364/OE.418192 http://doi.org/10.1364/OE.418192
Y.W. Zhai et al. , Detection of angular acceleration based on optical rotational Doppler effect . Opt. Express 27 , 15518 - 15527 ( 2019 ). http://doi.org/10.1364/OE.27.015518 http://doi.org/10.1364/OE.27.015518
L. Fang et al. , Vectorial Doppler metrology . Nat. Commun. 12 ,( 2021 ). http://doi.org/10.1038/s41467-021-24406-z http://doi.org/10.1038/s41467-021-24406-z
Z.Y. Wan et al. , Remote measurement of the angular velocity vector based on vectorial Doppler effect using air-core optical fiber . Research 2022 , 9839502 ( 2022 ). http://doi.org/10.34133/2022/9839502 http://doi.org/10.34133/2022/9839502
Z.Y. Wan , L. Fang , J. Wang , Direction-discriminated rotational Doppler velocimetry with circularly polarized vortex beams . Opt. Lett. 47 , 1021 - 1024 ( 2022 ). http://doi.org/10.1364/OL.443022 http://doi.org/10.1364/OL.443022
R.S. Sun et al. , Direction-sensitive rotational speed measurement based on the rotational Doppler effect of cylindrical vector beams . Appl. Opt. 61 , 7917 - 7924 ( 2022 ). http://doi.org/10.1364/AO.471059 http://doi.org/10.1364/AO.471059
S.X. Quan et al. , Vectorial Doppler complex spectrum and its application to the rotational detection . Appl. Phys. Express 16 , 042002 ( 2023 ). http://doi.org/10.35848/1882-0786/accb3d http://doi.org/10.35848/1882-0786/accb3d
S. Qiu et al. , Rotational Doppler effect detection by LG beams with a nonzero radial index . Opt. Express 29 , 10275 - 10284 ( 2021 ). http://doi.org/10.1364/OE.421705 http://doi.org/10.1364/OE.421705
Z.Y. Guo et al. , Radial-mode sensitive probe beam in the rotational Doppler effect . Opt. Express 31 , 7632 - 7642 ( 2023 ). http://doi.org/10.1364/OE.482431 http://doi.org/10.1364/OE.482431
Y. Ding et al. , Detection of a spinning object using a superimposed optical vortex array . Opt. Express 31 , 25889 - 25899 ( 2023 ). http://doi.org/10.1364/OE.496362 http://doi.org/10.1364/OE.496362
C. Rosales-Guzmán et al. , Measuring the translational and rotational velocities of particles in helical motion using structured light . Opt. Express 22 , 16504 - 16509 ( 2014 ). http://doi.org/10.1364/OE.22.016504 http://doi.org/10.1364/OE.22.016504
C. Rosales-Guzmán et al. , Direction-sensitive transverse velocity measurement by phase-modulated structured light beams . Opt. Lett. 39 , 5415 - 5418 ( 2014 ). http://doi.org/10.1364/OL.39.005415 http://doi.org/10.1364/OL.39.005415
Z.J. Zhang et al. , Measuring the rotational velocity and acceleration based on orbital angular momentum modulation and time-frequency analysis method . Opt. Commun. 502 , 127414 ( 2022 ). http://doi.org/10.1016/j.optcom.2021.127414 http://doi.org/10.1016/j.optcom.2021.127414
W.H. Zhang et al. , Free-space remote sensing of rotation at the photon-counting level . Phys. Rev. Appl. 10 , 044014 ( 2018 ). http://doi.org/10.1103/PhysRevApplied.10.044014 http://doi.org/10.1103/PhysRevApplied.10.044014
H.X. Guo et al. , Frequency upconversion detection of rotational Doppler effect . Photonics Res. 10 , 183 - 188 ( 2022 ). http://doi.org/10.1364/PRJ.441785 http://doi.org/10.1364/PRJ.441785
X.Y. Zhu et al. , Rotating axis measurement based on rotational Doppler effect of spliced superposed optical vortex . Nanophotonics 12 , 2157 - 2169 ( 2023 ). http://doi.org/10.1515/nanoph-2023-0090 http://doi.org/10.1515/nanoph-2023-0090
D.B. Phillips et al. , Rotational Doppler velocimetry to probe the angular velocity of spinning microparticles . Phys. Rev. A 90 , 011801 ( 2014 ). http://doi.org/10.1103/PhysRevA.90.011801 http://doi.org/10.1103/PhysRevA.90.011801
X.L. Chen , Rotation of an optically trapped vaterite microsphere measured using rotational Doppler effect . Opt. Eng. 57 , 036103 ( 2018 ). http://doi.org/10.1117/1.OE.57.3.036103 http://doi.org/10.1117/1.OE.57.3.036103
J.L. Zhu et al. , Real-time measurement of dynamic micro-displacement and direction using light’s orbital angular momentum . Appl. Phys. Lett. 120 , 251104 ( 2022 ). http://doi.org/10.1063/5.0098457 http://doi.org/10.1063/5.0098457
Z.J. Zhang et al. , Tiny velocity measurement using rotating petal-like mode of orbital angular momentum . Opt. Lett. 46 , 4805 - 4808 ( 2021 ). http://doi.org/10.1364/OL.439841 http://doi.org/10.1364/OL.439841
Y. Ren et al. , Non-contact ultralow rotational speed measurement of real objects based on rotational Doppler velocimetry . IEEE Trans. Instrum. Meas. 71 , 8002108 ( 2022 ). http://doi.org/10.1109/TIM.2022.3141155 http://doi.org/10.1109/TIM.2022.3141155
S. Qiu et al. , Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect . Opt. Express 27 , 24781 - 24792 ( 2019 ). http://doi.org/10.1364/OE.27.024781 http://doi.org/10.1364/OE.27.024781
S. Qiu et al. , Influence of lateral misalignment on the optical rotational Doppler effect . Appl. Opt. 58 , 2650 - 2655 ( 2019 ). http://doi.org/10.1364/AO.58.002650 http://doi.org/10.1364/AO.58.002650
Z.J. Zhang et al. , Rotation velocity detection with orbital angular momentum light spot completely deviated out of the rotation center . Opt. Express 28 , 6859 - 6867 ( 2020 ). http://doi.org/10.1364/OE.380324 http://doi.org/10.1364/OE.380324
Y. Ding et al. , Analysis of misaligned optical rotational Doppler effect by modal decomposition . Opt. Express 29 , 15288 - 15299 ( 2021 ). http://doi.org/10.1364/OE.424943 http://doi.org/10.1364/OE.424943
I.V. Basistiy et al. , Manifestation of the rotational Doppler effect by use of an off-axis optical vortex beam . Opt. Lett. 28 , 1185 - 1187 ( 2003 ). http://doi.org/10.1364/OL.28.001185 http://doi.org/10.1364/OL.28.001185
S. Qiu et al. , Rotational object detection at noncoaxial light incidence based on the rotational Doppler effect . Opt. Express 30 , 20441 - 20450 ( 2022 ). http://doi.org/10.1364/OE.461179 http://doi.org/10.1364/OE.461179
L. Fang , M.J. Padgett , J. Wang , Sharing a common origin between the rotational and linear Doppler effects . Laser Photonics Rev. 11 , 1700183 ( 2017 ). http://doi.org/10.1002/lpor.201700183 http://doi.org/10.1002/lpor.201700183
Y.W. Zhai et al. , The rotational Doppler effect of twisted photons in scattered fields . Laser Photonics Rev. 17 , 2201022 ( 2023 ). http://doi.org/10.1002/lpor.202201022 http://doi.org/10.1002/lpor.202201022
Y.W. Zhai et al. , The radial Doppler effect of optical vortex beams induced by a surface with radially moving periodic structure . J. Opt. 21 , 054002 ( 2019 ). http://doi.org/10.1088/2040-8986/ab146f http://doi.org/10.1088/2040-8986/ab146f
Y.W. Zhai et al. , Remote detection of a rotator based on rotational Doppler effect . Appl. Phys. Express 13 , 022012 ( 2020 ). http://doi.org/10.35848/1882-0786/ab6e0c http://doi.org/10.35848/1882-0786/ab6e0c
O. Emile et al. , Rotational Doppler effect on reflection upon an ideal rotating propeller . J. Opt. Soc. Am. B 39 , 1945 - 1949 ( 2022 ). http://doi.org/10.1364/JOSAB.461445 http://doi.org/10.1364/JOSAB.461445
Y. Ding et al. , Detection of a spinning object with circular procession using an optical vortex beam . Opt. Lett. 47 , 2398 - 2401 ( 2022 ). http://doi.org/10.1364/OL.458270 http://doi.org/10.1364/OL.458270
S.Y. Fu et al. , Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions . Opt. Express 25 , 20098 - 20108 ( 2017 ). http://doi.org/10.1364/OE.25.020098 http://doi.org/10.1364/OE.25.020098
S. Qiu et al. , Spinning object detection based on perfect optical vortex . Opt. Lasers Eng. 124 , 105842 ( 2020 ). http://doi.org/10.1016/j.optlaseng.2019.105842 http://doi.org/10.1016/j.optlaseng.2019.105842
Y.X. Zhang et al. , Rotating velocimetry based upon rotational Doppler effect of perfect Laguerre-Gaussian light modes . IEEE Trans. Instrum. Meas. 72 , 7005306 ( 2023 ).
S. Qiu et al. , Observation of the rotational Doppler shift of the ring Airy Gaussian vortex beam . Opt. Commun. 490 , 126900 ( 2021 ). http://doi.org/10.1016/j.optcom.2021.126900 http://doi.org/10.1016/j.optcom.2021.126900
T. Yu et al. , Free-space remote detection of a spinning object using the combined vortex beam . Opt. Express 30 , 39294 - 39308 ( 2022 ). http://doi.org/10.1364/OE.468612 http://doi.org/10.1364/OE.468612
S. Qiu et al. , Fragmental optical vortex for the detection of rotating object based on the rotational Doppler effect . Opt. Express 30 , 47350 - 47360 ( 2022 ). http://doi.org/10.1364/OE.476870 http://doi.org/10.1364/OE.476870
L. Torner , J.P. Torres , S. Carrasco , Digital spiral imaging . Opt. Express 13 , 873 - 881 ( 2005 ). http://doi.org/10.1364/OPEX.13.000873 http://doi.org/10.1364/OPEX.13.000873
G. Molina-Terriza et al. , Probing canonical geometrical objects by digital spiral imaging . J. Eur. Opt. Soc. Rapid Publ. 2 ,( 2007 ). http://doi.org/10.2971/jeos.2007.07014 http://doi.org/10.2971/jeos.2007.07014
D. Petrov et al. , Characterization of dielectric spheres by spiral imaging . Opt. Lett. 37 , 869 - 871 ( 2012 ). http://doi.org/10.1364/OL.37.000869 http://doi.org/10.1364/OL.37.000869
C.G. Shi et al. , Particle scattering induced orbital angular momentum spectrum change of vector Bessel-Gaussian vortex beam . Remote Sens. 14 , 4550 ( 2022 ). http://doi.org/10.3390/rs14184550 http://doi.org/10.3390/rs14184550
N. Hermosa et al. , Nanostep height measurement via spatial mode projection . Opt. Lett. 39 , 299 - 302 ( 2014 ). http://doi.org/10.1364/OL.39.000299 http://doi.org/10.1364/OL.39.000299
V. Rodríguez-Fajardo , A. Forbes , Measurement of nanometric heights by modal decomposition . Phys. Rev. Appl. 18 , 064068 ( 2022 ). http://doi.org/10.1103/PhysRevApplied.18.064068 http://doi.org/10.1103/PhysRevApplied.18.064068
G.D. Xie et al. , Using a complex optical orbital-angular-momentum spectrum to measure object parameters . Opt. Lett. 42 , 4482 - 4485 ( 2017 ). http://doi.org/10.1364/OL.42.004482 http://doi.org/10.1364/OL.42.004482
Y.W. Zhang et al. , Detecting object open angle and direction using machine learning . IEEE Access 8 , 12300 - 12306 ( 2020 ). http://doi.org/10.1109/ACCESS.2020.2965537 http://doi.org/10.1109/ACCESS.2020.2965537
Z.X. Wang et al. , Identifying the symmetry of an object based on orbital angular momentum through a few-mode fiber . Chin. Phys. Lett. 36 , 124207 ( 2019 ). http://doi.org/10.1088/0256-307X/36/12/124207 http://doi.org/10.1088/0256-307X/36/12/124207
Li, F. S. et al. Optical images rotation and reflection with engineered orbital angular momentum spectrum. Appl. Phys. Lett. 113 , 161109 (2018).
D. Wei et al. , Laguerre-Gaussian transform for rotating image processing . Opt. Express 28 , 26898 - 26907 ( 2020 ). http://doi.org/10.1364/OE.403521 http://doi.org/10.1364/OE.403521
F. Han et al. , Symmetry detection of rotating patterns based on rotational Doppler effect of light . Chin. Opt. Lett. 20 , 122601 ( 2022 ). http://doi.org/10.3788/COL202220.122601 http://doi.org/10.3788/COL202220.122601
Emile, O. et al. Rotational Doppler shift of the light transmitted behind a rotating object with rotational symmetries: rotational Doppler shift of the transmitted light. Eur. Phys. J. D 76 , 8 (2022).
K.J. Dai et al. , Remote sensing using a spatially and temporally controlled asymmetric perfect vortex basis generated with a 2D HOBBIT . Opt. Express 30 , 34765 - 34775 ( 2022 ). http://doi.org/10.1364/OE.469328 http://doi.org/10.1364/OE.469328
L.Y. Xu et al. , Azimuth measurement based on OAM phase spectrum of optical vortices . Opt. Commun. 530 , 129170 ( 2023 ). http://doi.org/10.1016/j.optcom.2022.129170 http://doi.org/10.1016/j.optcom.2022.129170
N. Cvijetic et al. , Detecting lateral motion using light’s orbital angular momentum . Sci. Rep. 5 ,( 2015 ). http://doi.org/10.1038/srep15422 http://doi.org/10.1038/srep15422
G.M. Giovanni Milione et al. , Remotely sensing an object’s rotational orientation using the orbital angular momentum of light (Invited Paper) . Chin. Opt. Lett. 15 , 030012 ( 2017 ). http://doi.org/10.3788/COL201715.030012 http://doi.org/10.3788/COL201715.030012
W.H. Li et al. , Sensing azimuthally symmetric objects by a single-pixel detector via COAM matrix . Appl. Phys. Lett. 122 , 251106 ( 2023 ). http://doi.org/10.1063/5.0153689 http://doi.org/10.1063/5.0153689
G.A. Swartzlander , Peering into darkness with a vortex spatial filter . Opt. Lett. 26 , 497 - 499 ( 2001 ). http://doi.org/10.1364/OL.26.000497 http://doi.org/10.1364/OL.26.000497
M. Harwit , Photon orbital angular momentum in astrophysics . Astrophys. J. 597 , 1266 - 1270 ( 2003 ). http://doi.org/10.1086/378623 http://doi.org/10.1086/378623
G.A. Swartzlander et al. , Astronomical demonstration of an optical vortex coronagraph . Opt. Express 16 , 10200 - 10207 ( 2008 ). http://doi.org/10.1364/OE.16.010200 http://doi.org/10.1364/OE.16.010200
G. Anzolin et al. , Optical vortices with starlight . Astron. Astrophys. 488 , 1159 - 1165 ( 2008 ). http://doi.org/10.1051/0004-6361:200810469 http://doi.org/10.1051/0004-6361:200810469
G.C.G. Berkhout , M.W. Beijersbergen , Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects . Phys. Rev. Lett. 101 , 100801 ( 2008 ). http://doi.org/10.1103/PhysRevLett.101.100801 http://doi.org/10.1103/PhysRevLett.101.100801
F. Tamburini et al. , Twisting of light around rotating black holes . Nat. Phys. 7 , 195 - 197 ( 2011 ). http://doi.org/10.1038/nphys1907 http://doi.org/10.1038/nphys1907
F. Tamburini , B. Thidé , M. Della Valle , Measurement of the spin of the M87 black hole from its observed twisted light . Mon. Not. R. Astron. Soc. Lett. 492 , L22 - L27 ( 2020 ). http://doi.org/10.1093/mnrasl/slz176 http://doi.org/10.1093/mnrasl/slz176
F. Tamburini , F. Feleppa , B. Thidé , Constraining the generalized uncertainty principle with the light twisted by rotating black holes and M87* . Phys. Lett. B 826 , 136894 ( 2022 ). http://doi.org/10.1016/j.physletb.2022.136894 http://doi.org/10.1016/j.physletb.2022.136894
A. Belmonte , C. Rosales-Guzmán , J.P. Torres , Measurement of flow vorticity with helical beams of light . Optica 2 , 1002 - 1005 ( 2015 ). http://doi.org/10.1364/OPTICA.2.001002 http://doi.org/10.1364/OPTICA.2.001002
A. Ryabtsev et al. , Fluid flow vorticity measurement using laser beams with orbital angular momentum . Opt. Express 24 , 11762 - 11767 ( 2016 ). http://doi.org/10.1364/OE.24.011762 http://doi.org/10.1364/OE.24.011762
E.F. Strong et al. , Angular velocimetry for fluid flows: an optical sensor using structured light and machine learning . Opt. Express 29 , 9960 - 9980 ( 2021 ). http://doi.org/10.1364/OE.417210 http://doi.org/10.1364/OE.417210
O. Emile , J. Emile , Fluid vortex mapping using the rotational Doppler effect . Appl. Phys. Lett. 120 , 181101 ( 2022 ). http://doi.org/10.1063/5.0091746 http://doi.org/10.1063/5.0091746
A.H. Dorrah , M. Zamboni-Rached , M. Mojahedi , Experimental demonstration of tunable refractometer based on orbital angular momentum of longitudinally structured light . Light Sci. Appl. 7 , 40 ( 2018 ). http://doi.org/10.1038/s41377-018-0034-9 http://doi.org/10.1038/s41377-018-0034-9
Chen, M. J. & Lavery, M. Optical angular momentum interaction with turbulent and scattering media. In : Al-Amri, M. D., Andrews, D. L. & Babiker, M. (eds.) Structured Light for Optical Communication , 237–258 (Amsterdam: Elsevier, 2021).
Y.C. Guo et al. , Distortion compensation for orbital angular momentum beams: from probing to deep learning . J. Light. Technol. 41 , 2041 - 2050 ( 2023 ). http://doi.org/10.1109/JLT.2022.3218828 http://doi.org/10.1109/JLT.2022.3218828
Y.Y. Zhang et al. , Machine learning based adaptive optics for doughnut-shaped beam . Opt. Express 27 , 16871 - 16881 ( 2019 ). http://doi.org/10.1364/OE.27.016871 http://doi.org/10.1364/OE.27.016871
J.M. Liu et al. , Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication . Opt. Express 27 , 16671 - 16688 ( 2019 ). http://doi.org/10.1364/OE.27.016671 http://doi.org/10.1364/OE.27.016671
W.J. Xiong et al. , Convolutional neural network based atmospheric turbulence compensation for optical orbital angular momentum multiplexing . J. Light. Technol. 38 , 1712 - 1721 ( 2020 ). http://doi.org/10.1109/JLT.2020.2969296 http://doi.org/10.1109/JLT.2020.2969296
Y.W. Zhai et al. , Turbulence aberration correction for vector vortex beams using deep neural networks on experimental data . Opt. Express 28 , 7515 - 7527 ( 2020 ). http://doi.org/10.1364/OE.388526 http://doi.org/10.1364/OE.388526
M. Krenn et al. , Communication with spatially modulated light through turbulent air across Vienna . N. J. Phys. 16 , 113028 ( 2014 ). http://doi.org/10.1088/1367-2630/16/11/113028 http://doi.org/10.1088/1367-2630/16/11/113028
Knutson, E. M. et al. Deep learning as a tool to distinguish between high orbital angular momentum optical modes. In : Proceedings of SPIE 9970, Optics and Photonics for Information Processing X (San Diego, CA, USA: SPIE, 2016, 997013).
J. Li , M. Zhang , D.S. Wang , Adaptive demodulator using machine learning for orbital angular momentum shift keying . IEEE Photonics Technol. Lett. 29 , 1455 - 1458 ( 2017 ). http://doi.org/10.1109/LPT.2017.2726139 http://doi.org/10.1109/LPT.2017.2726139
S. Lohani , R.T. Glasser , Turbulence correction with artificial neural networks . Opt. Lett. 43 , 2611 - 2614 ( 2018 ). http://doi.org/10.1364/OL.43.002611 http://doi.org/10.1364/OL.43.002611
Z.B. Huang et al. , Identification of hybrid orbital angular momentum modes with deep feedforward neural network . Results Phys. 15 , 102790 ( 2019 ). http://doi.org/10.1016/j.rinp.2019.102790 http://doi.org/10.1016/j.rinp.2019.102790
X. Fu , Y.H. Bai , Y.J. Yang , Measuring oam by the hybrid scheme of interference and convolutional neural network . Opt. Eng. 60 , 064109 ( 2021 ). http://doi.org/10.1117/1.OE.60.6.064109 http://doi.org/10.1117/1.OE.60.6.064109
J.L. Zhao et al. , Multidimensional information assisted deep learning realizing flexible recognition of vortex beam modes . IEEE Photonics J. 13 , 7800406 ( 2021 ). http://doi.org/10.1109/JPHOT.2021.3105500 http://doi.org/10.1109/JPHOT.2021.3105500
J. Li et al. , Joint atmospheric turbulence detection and adaptive demodulation technique using the cnn for the OAM-FSO communication . Opt. Express 26 , 10494 - 10508 ( 2018 ). http://doi.org/10.1364/OE.26.010494 http://doi.org/10.1364/OE.26.010494
X.L. Yin et al. , Experimental study of atmospheric turbulence detection using an orbital angular momentum beam via a convolutional neural network . IEEE Access 7 , 184235 - 184241 ( 2019 ). http://doi.org/10.1109/ACCESS.2019.2960544 http://doi.org/10.1109/ACCESS.2019.2960544
R.D. Sun et al. , Identifying orbital angular momentum modes in turbulence with high accuracy via machine learning . J. Opt. 21 , 075703 ( 2019 ). http://doi.org/10.1088/2040-8986/ab2586 http://doi.org/10.1088/2040-8986/ab2586
H. Lv et al. , Identification of diffracted vortex beams at different propagation distances using deep learning . Front. Phys. 10 , 843932 ( 2022 ). http://doi.org/10.3389/fphy.2022.843932 http://doi.org/10.3389/fphy.2022.843932
H.B. Zhou et al. , Atmospheric turbulence strength distribution along a propagation path probed by longitudinally structured optical beams . Nat. Commun. 14 ,( 2023 ). http://doi.org/10.1038/s41467-023-40381-z http://doi.org/10.1038/s41467-023-40381-z
Chen, Z. Z. et al. Environmental monitoring using orbital angular momentum mode decomposition enhanced machine learning. Print at https://doi.org/10.48550/arxiv.2403.19179 10.48550/arxiv.2403.19179 (2024).
V. Giovannetti , S. Lloyd , L. Maccone , Advances in quantum metrology . Nat. Photonics 5 , 222 - 229 ( 2011 ). http://doi.org/10.1038/nphoton.2011.35 http://doi.org/10.1038/nphoton.2011.35
V. Giovannetti , S. Lloyd , L. Maccone , Quantum-enhanced measurements: beating the standard quantum limit . Science 306 , 1330 - 1336 ( 2004 ). http://doi.org/10.1126/science.1104149 http://doi.org/10.1126/science.1104149
M. Barbieri , Optical quantum metrology . PRX Quantum 3 , 010202 ( 2022 ). http://doi.org/10.1103/PRXQuantum.3.010202 http://doi.org/10.1103/PRXQuantum.3.010202
A. Mair et al. , Entanglement of the orbital angular momentum states of photons . Nature 412 , 313 - 316 ( 2001 ). http://doi.org/10.1038/35085529 http://doi.org/10.1038/35085529
A. Forbes , I. Nape , Quantum mechanics with patterns of light: progress in high dimensional and multidimensional entanglement with structured light . AVS Quantum Sci. 1 , 011701 ( 2019 ). http://doi.org/10.1116/1.5112027 http://doi.org/10.1116/1.5112027
I. Nape et al. , Quantum structured light in high dimensions . APL Photonics 8 , 051101 ( 2023 ). http://doi.org/10.1063/5.0138224 http://doi.org/10.1063/5.0138224
A. Forbes et al. , Quantum cryptography with structured photons . Appl. Phys. Lett. 124 , 110501 ( 2024 ). http://doi.org/10.1063/5.0185281 http://doi.org/10.1063/5.0185281
L.X. Chen , J.J. Lei , J. Romero , Quantum digital spiral imaging . Light Sci. Appl. 3 , e153 ( 2014 ). http://doi.org/10.1038/lsa.2014.34 http://doi.org/10.1038/lsa.2014.34
L.X. Chen , Quantum discord of thermal two-photon orbital angular momentum state: mimicking teleportation to transmit an image . Light Sci. Appl. 10 , 148 ( 2021 ). http://doi.org/10.1038/s41377-021-00585-8 http://doi.org/10.1038/s41377-021-00585-8
B. Jack et al. , Holographic ghost imaging and the violation of a bell inequality . Phys. Rev. Lett. 103 , 083602 ( 2009 ). http://doi.org/10.1103/PhysRevLett.103.083602 http://doi.org/10.1103/PhysRevLett.103.083602
W.H. Zhang et al. , Quantum remote sensing of the angular rotation of structured objects . Phys. Rev. A 100 , 043832 ( 2019 ). http://doi.org/10.1103/PhysRevA.100.043832 http://doi.org/10.1103/PhysRevA.100.043832
E. Polino et al. , Photonic quantum metrology . AVS Quantum Sci. 2 , 024703 ( 2020 ). http://doi.org/10.1116/5.0007577 http://doi.org/10.1116/5.0007577
A.K. Jha , G.S. Agarwal , R.W. Boyd , Supersensitive measurement of angular displacements using entangled photons . Phys. Rev. A 83 , 053829 ( 2011 ). http://doi.org/10.1103/PhysRevA.83.053829 http://doi.org/10.1103/PhysRevA.83.053829
R. Fickler et al. , Quantum entanglement of high angular momenta . Science 338 , 640 - 643 ( 2012 ). http://doi.org/10.1126/science.1227193 http://doi.org/10.1126/science.1227193
V. D’Ambrosio et al. , Photonic polarization gears for ultra-sensitive angular measurements . Nat. Commun. 4 ,( 2013 ). http://doi.org/10.1038/ncomms3432 http://doi.org/10.1038/ncomms3432
F. Bouchard et al. , Quantum metrology at the limit with extremal majorana constellations . Optica 4 , 1429 - 1432 ( 2017 ). http://doi.org/10.1364/OPTICA.4.001429 http://doi.org/10.1364/OPTICA.4.001429
M. Eriksson et al. , Sensing rotations with multiplane light conversion . Phys. Rev. Appl. 20 , 024052 ( 2023 ). http://doi.org/10.1103/PhysRevApplied.20.024052 http://doi.org/10.1103/PhysRevApplied.20.024052
K.A. Forbes , D.L. Andrews , Orbital angular momentum of twisted light: chirality and optical activity . J. Phys. Photonics 3 , 022007 ( 2021 ). http://doi.org/10.1088/2515-7647/abdb06 http://doi.org/10.1088/2515-7647/abdb06
S. Mamani et al. , Transmission of classically entangled beams through mouse brain tissue . J. Biophotonics 11 , e201800096 ( 2018 ). http://doi.org/10.1002/jbio.201800096 http://doi.org/10.1002/jbio.201800096
A. Porfirev , S. Khonina , A. Kuchmizhak , Light-matter interaction empowered by orbital angular momentum: control of matter at the micro- and nanoscale . Prog. Quantum Electron. 88 , 100459 ( 2023 ). http://doi.org/10.1016/j.pquantelec.2023.100459 http://doi.org/10.1016/j.pquantelec.2023.100459
N. Tischler et al. , Quantum optical rotatory dispersion . Sci. Adv. 2 , e1601306 ( 2016 ). http://doi.org/10.1126/sciadv.1601306 http://doi.org/10.1126/sciadv.1601306
S. Mukamel et al. , Roadmap on quantum light spectroscopy . J. Phys. B: At. Mol. Opt. Phys. 53 , 072002 ( 2020 ). http://doi.org/10.1088/1361-6455/ab69a8 http://doi.org/10.1088/1361-6455/ab69a8
M. Babiker , D.L. Andrews , V.E. Lembessis , Atoms in complex twisted light . J. Opt. 21 , 013001 ( 2019 ). http://doi.org/10.1088/2040-8986/aaed14 http://doi.org/10.1088/2040-8986/aaed14
C.T. Schmiegelow et al. , Transfer of optical orbital angular momentum to a bound electron . Nat. Commun. 7 ,( 2016 ). http://doi.org/10.1038/ncomms12998 http://doi.org/10.1038/ncomms12998
Z.R. Ji et al. , Photocurrent detection of the orbital angular momentum of light . Science 368 , 763 - 767 ( 2020 ). http://doi.org/10.1126/science.aba9192 http://doi.org/10.1126/science.aba9192
H.W. Shu et al. , Microcomb-driven silicon photonic systems . Nature 605 , 457 - 463 ( 2022 ). http://doi.org/10.1038/s41586-022-04579-3 http://doi.org/10.1038/s41586-022-04579-3
E. Lustig et al. , Photonic topological insulator induced by a dislocation in three dimensions . Nature 609 , 931 - 935 ( 2022 ). http://doi.org/10.1038/s41586-022-05129-7 http://doi.org/10.1038/s41586-022-05129-7
Z.L. Zhang et al. , Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments . Nat. Photonics 12 , 554 - 559 ( 2018 ). http://doi.org/10.1038/s41566-018-0238-9 http://doi.org/10.1038/s41566-018-0238-9
Zanon-Willette, T. et al. Robust quantum sensors with twisted-light fields induced optical transitions. Print at https://doi.org/10.48550/arxiv.2306.17620 10.48550/arxiv.2306.17620 (2023).
L.J. Kong et al. , High-dimensional entanglement-enabled holography . Phys. Rev. Lett. 130 , 053602 ( 2023 ). http://doi.org/10.1103/PhysRevLett.130.053602 http://doi.org/10.1103/PhysRevLett.130.053602
C.K. Hong , Z.Y. Ou , L. Mandel , Measurement of subpicosecond time intervals between two photons by interference . Phys. Rev. Lett. 59 , 2044 - 2046 ( 1987 ). http://doi.org/10.1103/PhysRevLett.59.2044 http://doi.org/10.1103/PhysRevLett.59.2044
A. Lyons et al. , Attosecond-resolution Hong-Ou-Mandel interferometry . Sci. Adv. 4 , eaap9416 ( 2018 ). http://doi.org/10.1126/sciadv.aap9416 http://doi.org/10.1126/sciadv.aap9416
B. Ndagano et al. , Quantum microscopy based on Hong-Ou-Mandel interference . Nat. Photonics 16 , 384 - 389 ( 2022 ). http://doi.org/10.1038/s41566-022-00980-6 http://doi.org/10.1038/s41566-022-00980-6
D. Giovannini et al. , Spatially structured photons that travel in free space slower than the speed of light . Science 347 , 857 - 860 ( 2015 ). http://doi.org/10.1126/science.aaa3035 http://doi.org/10.1126/science.aaa3035
A. Lyons et al. , How fast is a twisted photon? . Optica 5 , 682 - 686 ( 2018 ). http://doi.org/10.1364/OPTICA.5.000682 http://doi.org/10.1364/OPTICA.5.000682
F. Bouchard et al. , Observation of subluminal twisted light in vacuum . Optica 3 , 351 - 354 ( 2016 ). http://doi.org/10.1364/OPTICA.3.000351 http://doi.org/10.1364/OPTICA.3.000351
Y.W. Zhang et al. , Engineering two-photon high-dimensional states through quantum interference . Sci. Adv. 2 , e1501165 ( 2016 ). http://doi.org/10.1126/sciadv.1501165 http://doi.org/10.1126/sciadv.1501165
K. Ehrlich et al. , A miniature fiber optic ablation probe manufactured via ultrafast laser inscription and selective chemical etching . APL Photonics 8 , 076109 ( 2023 ). http://doi.org/10.1063/5.0146147 http://doi.org/10.1063/5.0146147
H.D.L. Pires , H.C.B. Florijn , M.P. van Exter , Measurement of the spiral spectrum of entangled two-photon states . Phys. Rev. Lett. 104 , 020505 ( 2010 ). http://doi.org/10.1103/PhysRevLett.104.020505 http://doi.org/10.1103/PhysRevLett.104.020505
B.H. Jia , 2D optical materials and the implications for photonics . APL Photonics 4 , 080401 ( 2019 ). http://doi.org/10.1063/1.5120030 http://doi.org/10.1063/1.5120030
B. Ndagano et al. , Characterizing quantum channels with non-separable states of classical light . Nat. Phys. 13 , 397 - 402 ( 2017 ). http://doi.org/10.1038/nphys4003 http://doi.org/10.1038/nphys4003
I. Nape et al. , Revealing the invariance of vectorial structured light in complex media . Nat. Photonics 16 , 538 - 546 ( 2022 ). http://doi.org/10.1038/s41566-022-01023-w http://doi.org/10.1038/s41566-022-01023-w
A. Forbes , A. Aiello , B. Ndagano , Classically entangled light . Prog. Opt. 64 , 99 - 153 ( 2019 ). http://doi.org/10.1016/bs.po.2018.11.001 http://doi.org/10.1016/bs.po.2018.11.001
Y.J. Shen , C. Rosales-Guzmán , Nonseparable states of light: from quantum to classical . Laser Photonics Rev. 16 , 2100533 ( 2022 ). http://doi.org/10.1002/lpor.202100533 http://doi.org/10.1002/lpor.202100533
S. Sciara et al. , Scalable and effective multi-level entangled photon states: a promising tool to boost quantum technologies . Nanophotonics 10 , 4447 - 4465 ( 2021 ). http://doi.org/10.1515/nanoph-2021-0510 http://doi.org/10.1515/nanoph-2021-0510
N. Aslam et al. , Quantum sensors for biomedical applications . Nat. Rev. Phys. 5 , 157 - 169 ( 2023 ). http://doi.org/10.1038/s42254-023-00558-3 http://doi.org/10.1038/s42254-023-00558-3
O. Lib , Y. Bromberg , Quantum light in complex media and its applications . Nat. Phys. 18 , 986 - 993 ( 2022 ). http://doi.org/10.1038/s41567-022-01692-y http://doi.org/10.1038/s41567-022-01692-y
H. Cao et al. , Controlling light propagation in multimode fibers for imaging, spectroscopy, and beyond . Adv. Opt. Photonics 15 , 524 - 612 ( 2023 ). http://doi.org/10.1364/AOP.484298 http://doi.org/10.1364/AOP.484298
N.H. Valencia et al. , Unscrambling entanglement through a complex medium . Nat. Phys. 16 , 1112 - 1116 ( 2020 ). http://doi.org/10.1038/s41567-020-0970-1 http://doi.org/10.1038/s41567-020-0970-1
A. Forbes , I. Nape , A scramble to preserve entanglement . Nat. Phys. 16 , 1091 - 1092 ( 2020 ). http://doi.org/10.1038/s41567-020-0976-8 http://doi.org/10.1038/s41567-020-0976-8
Q.Y. Wu et al. , Experimental realization of a quantum classification: bell state measurement via machine learning . APL Mach. Learn. 1 , 036111 ( 2023 ). http://doi.org/10.1063/5.0149414 http://doi.org/10.1063/5.0149414
S. Goel et al. , Inverse design of high-dimensional quantum optical circuits in a complex medium . Nat. Phys. 20 , 232 - 239 ( 2024 ). http://doi.org/10.1038/s41567-023-02319-6 http://doi.org/10.1038/s41567-023-02319-6
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution