无数据
1.Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
2.State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Danheng Gao (gaodanheng@ciomp.ac.cn)
Haoran Meng (menghaoran@ciomp.ac.cn)
Received:25 June 2024,
Revised:19 November 2024,
Accepted:24 December 2024,
Published Online:25 February 2025,
Published:31 August 2025
Scan QR Code
Wu, Q. et al. Advancements in ultrafast photonics: confluence of nonlinear optics and intelligent strategies. Light: Science & Applications, 14, 2082-2110 (2025).
Wu, Q. et al. Advancements in ultrafast photonics: confluence of nonlinear optics and intelligent strategies. Light: Science & Applications, 14, 2082-2110 (2025). DOI: 10.1038/s41377-024-01732-7.
Automatic mode-locking techniques
the integration of intelligent technologies with nonlinear optics offers the promise of on-demand intelligent control
potentially overcoming the inherent limitations of traditional ultrafast pulse generation that have predominantly suffered from the instability and suboptimality of open-loop manual tuning. The advancements in intelligent algorithm-driven automatic mode-locking techniques primarily are explored in this review
which also revisits the fundamental principles of nonlinear optical absorption
and examines the evolution and categorization of conventional mode-locking techniques. The convergence of ultrafast pulse nonlinear interactions with intelligent technologies has intricately expanded the scope of ultrafast photonics
unveiling considerable potential for innovation and catalyzing new waves of research breakthroughs in ultrafast photonics and nonlinear optics characters.
Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416 , 233–237, https://doi.org/10.1038/416233a (2002)..
Yao, B. C. et al. Interdisciplinary advances in microcombs: bridging physics and information technology. eLight 4 , 19, https://doi.org/10.1186/s43593-024-00071-9 (2024)..
van Gardingen-Cromwijk, T. et al. Non-isoplanatic lens aberration correction in dark-field digital holographic microscopy for semiconductor metrology. Light Adv. Manuf. 4 , 453–465, https://doi.org/10.37188/lam.2023.041 (2024)..
Lee, J. et al. Time-of-flight measurement with femtosecond light pulses. Nat. Photonics 4 , 716–720, https://doi.org/10.1038/nphoton.2010.175 (2010)..
Gao, Z. et al. Breaking the speed limitation of wavemeter through spectra-space-time mapping. Light Adv. Manuf. 4 , 1–8, https://doi.org/10.37188/lam.2024.013 (2024)..
Yang, Q. F. et al. Efficient microresonator frequency combs. eLight 4 , 18, https://doi.org/10.1186/s43593-024-00075-5 (2024)..
Lu, J. F. et al. Tailoring chiral optical properties by femtosecond laser direct writing in silica. Light Sci. Appl. 12 , 46, https://doi.org/10.1038/s41377-023-01080-y (2023)..
Liu, H., Lin, W. & Hong, M. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications. Light Sci. Appl. 10 , 162, https://doi.org/10.1038/s41377-021-00596-5 (2021)..
Qiao, M. et al. Ultrafast laser processing of silk films by bulging and ablation for optical functional devices. Light Adv. Manuf. 5 , 308–318, https://doi.org/10.37188/lam.2024.024 (2024)..
Zhang, C. et al. Differential mode-gain equalization via femtosecond laser micromachining-induced refractive index tailoring. Light Adv. Manuf. 5 , 1–9, https://doi.org/10.37188/lam.2024.014 (2024)..
Steinmetz, T. et al. Laser frequency combs for astronomical observations. Science 321 , 1335–1337, https://doi.org/10.1126/science.1161030 (2008)..
Li, C. H. et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s -1 . Nature 452 , 610–612, https://doi.org/10.1038/nature06854 (2008)..
Sun, J. X. et al. Reproduction of mode-locked pulses by spectrotemporal domain-informed deep learning. Opt. Express 31 , 34100–34111, https://doi.org/10.1364/oe.501721 (2023)..
Han, Y. etal. Pure-high-even-order dispersion bound solitons complexes in ultra-fast fiber lasers. Light Sci. Appl. 13 , 101, https://doi.org/10.1038/s41377-024-01451-z (2024)..
Hu, F. et al. Spatio-temporal breather dynamics in microcomb soliton crystals. Light Sci. Appl. 13 , 251, https://doi.org/10.1038/s41377-024-01573-4 (2024)..
Hu, X. et al. Novel optical soliton molecules formed in a fiber laser with near-zero net cavity dispersion. Light Sci. Appl. 12 , 38, https://doi.org/10.1038/s41377-023-01074-w (2023)..
Yu, H. H. et al. Topological insulator as an optical modulator for pulsed solid-state lasers. Laser Photonics Rev. 7 , L77–L83, https://doi.org/10.1002/lpor.201300084 (2013)..
Liu, J. et al. Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser. Opt. Lett. 36 , 4008–4010, ht tps://doi.org/10.1364/ol.36.004008 (2011)..
Wang, F. et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol. 3 , 738–742, https://doi.org/10.1038/nnano.2008.312 (2008)..
Popa, D. et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett. 97 , 203106, https://doi.org/10.1063/1.3517251 (2010)..
Luo, Z. Q. et al. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe 2 ) for passively mode-locked soliton fiber laser [Invited ] . Photonics Res. 3 , A79–A86, https://doi.org/10.1364/prj.3.000a79 (2015)..
Li, W. X. et al. Fabrication and application of a graphene polarizer with strong saturable absorption. Photonics Res. 4 , 41–44, https://doi.org/10.1364/prj.4.000041 (2016)..
Pu, Y. J. et al. Mode-locking and wavelength-tuning of a NPR fiber laser based on optical speckle. Opt. Lett. 49 , 3686–3689, https://doi.org/10.1364/ol.528656 (2024)..
Zou, J. H. et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format. Light Sci. Appl. 9 , 61, https://doi.org/10.1038/s41377-020-0305-0 (2020)..
Sugioka, K. & Cheng, Y. Ultrafast lasers-reliable tools for advanced materials processing. Light Sci. Appl. 3 , e149, https://doi.org/10.1038/lsa.2014.30 (2014)..
Qin, C. Y. et al. Electrically controllable laser frequency combs in graphene-fibre microresonators. Light Sci. Appl. 9 , 185, https://doi.org/10.1038/s41377-020-00419-z (2020)..
Łaszczych, Z. & Soboń, G. Dispersion management of a nonlinear amplifying loop mirror-based erbium-doped fiber laser. Opt. Express 29 , 2690–2702, https://doi.org/10.1364/oe.416107 (2021)..
Song, Y. Q. et al. Tunable all-normal-dispersion femtosecond Yb: fiber laser with biased nonlinear amplifying loop mirror. Appl. Phys. Express 14 , 102002, https://doi.org/10.35848/1882-0786/ac2211 (2021)..
Thulasi, S. & Sivabalan, S. All-fiber femtosecond mode-locked Yb-laser with few-mode fiber as a saturable absorber. IEEE Photonics Technol. Lett. 33 , 223–226, https://doi.org/10.1109/lpt.2021.3053418 (2021)..
Wang, Z. K. et al. Er-doped mode-locked fiber laser with a hybrid structure of a step-index-graded-index multimode fiber as the saturable absorber. J. Lightwave Technol. 35 , 5280–5285, https://doi.org/10.1109/jlt.2017.2768663 (2017)..
Fermann, M. E. et al. Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber. Opt. Lett. 18 , 894–896, https://doi.org/10.1364/ol.18.000894 (1993)..
Matsas, V. J. et al. Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution. Opt. Lett. 18 , 358–360, https://doi.org/10.1364/ol.18.000358 (1993)..
Liu, X. Y. et al. All-polarization-maintaining linear cavity fiber lasers mode-locked by nonlinear polarization evolution in stretched pulse regime. J. Lightwave Technol. 41 , 5107–5115, https://doi.org/10.1109/jlt.2023.3250224 (2023)..
Kim, J. & Song, Y. J. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, s tatus, and applications. Adv. Opt. Photonics 8 , 465–540, https://doi.org/10.1364/aop.8.000465 (2016)..
Li, X. L. et al. Fine-structure oscillations of noise-like pulses induced by amplitude modulation of nonlinear polarization rotation. Opt. Lett. 42 , 4203–4206, https://doi.org/10.1364/ol.42.004203 (2017)..
Zhao, L. M., Tang, D. Y. & Liu, A. Q. Chaotic dynamics of a passively mode-locked soliton fiber ring laser. Chaos 16 , 013128, https://doi.org/10.1063/1.2173049 (2006)..
Wang, Y. & Xu, C. Q. Actively Q-switched fiber lasers: switching dynamics and nonlinear processes. Prog. Quantum Electron. 31 , 131–216, https://doi.org/10.1016/j.pquantelec.2007.06.001 (2007)..
Wang, X. Y. et al. Experimental study on buildup dynamics of a harmonic mode-locking soliton fiber laser. Opt. Express 27 , 28808–28815, https://doi.org/10.1364/oe.27.028808 (2019)..
Ahmad, H. et al. Evolution of noise-like pulses to watt-level all-fiber supercontinuum in compact all-normal dispersion fiber laser using nonlinear polarization rotation. Opt. Fiber Technol. 87 , 103861, https://doi.org/10.1016/j.yofte.2024.103861 (2024)..
Li, S. et al. An automatic mode-locked system for passively mode-locked fiber laser. Proceedings of the SPIE 9043, 2013 International Conference on Optical Instruments and Technology 904313 (SPIE, 2013).
Krzempek, K. et al. A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser. Laser Phys. Lett. 10 , 105103, https://doi.org/10.1088/1612-2011/10/10/105103 (2013)..
Kang, M. S., Joly, N. Y. & Russell, P. S. J. Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances. Opt. Lett. 38 , 561–563, https://doi.org/10.1364/ol.38.000561 (2013)..
Amrani, F. et al. Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic. Opt. Lett. 34 , 2120–2122, https://doi.org/10.1364/ol.34.002120 (2009)..
Ling, Y. D. et al. L -band GHz femtosecond passively harmonic mode-locked Er-doped fiber laser based on nonlinear polarization rotation. IEEE Photonics J. 11 , 7102507, https:// doi.org/10.1109/jphot.2019.2927771 (2019)..
Zhang, Z. X. et al. Switchable dual-wavelength Q-switched and mode-locked fiber lasers using a large-angle tilted fiber grating. Opt. Express 23 , 1353–1360, https://doi.org/10.1364/oe.23.001353 (2015)..
Lee, J. et al. Q-switched mode-locking of an erbium-doped fiber laser through subharmonic cavity modulation. Proceedings of the 25th IEEE Photonics Conference (IPC) 664–665 (2012).
Bae, J. E. et al. Transition of pulsed operation from Q-switching to continuous-wave mode-locking in a Yb: KLuW waveguide laser. Opt. Express 28 , 18027–18034, https://doi.org/10.1364/oe.395701 (2020)..
Yan, Q. et al. Machine learning based automatic mode-locking of a dual-wavelength soliton fiber laser. Photonics 11 , 47, https://doi.org/10.3390/photonics11010047 (2024)..
Bale, B. G. et al. Transition dynamics for multi-pulsing in mode-locked lasers. Opt. Express 17 , 23137–23146, https://doi.org/10.1364/oe.17.023137 (2009)..
Meng, F. & Dudley, J. M. Toward a self-driving ultrafast fiber laser. Light Sci. Appl. 9 , 26, https://doi.org/10.1038/s41377-020-0270-7 (2020)..
Zhou, P. et al. Numerical and experimental study on coherent beam combining of fibre amplifiers using simulated annealing algorithm. Chin. Phys. B 19 , 024207 (2010)..
Wang, K. et al. On the use of deep learning for phase recovery. Light Sci. Appl. 13 , 4, https://doi.org/10.1038/s41377-023-01340-x (2024)..
Feehan, J. S. et al. Computer-automated design of mode-locked fiber lasers. Opt. Express 30 , 3455–3473, https://doi.org/10.1364/oe.450059 (2022)..
Sun, C. et al. Deep reinforcement learning for optical systems: a case study of mode-locked lasers. Mach. Learn. Sci. Technol. 1 , 045013, https://doi.org/10.1088/2632-2153/abb6d6 (2020)..
Luo, C. et al. High-repetition-rate real-time automatic mode-locked fibre laser enabled by a pre-stretch technique. IEEE Photonics Technol. Lett. 34 , 791–794, https://doi.org/10.1109/lpt.2022.3185989 (2022)..
Shen, X. L. et al. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers. Opt. Lett. 37 , 3426–3428, https://doi.org/10.1364/ol.37.003426 (2012)..
Slowik, A. & Kwasnicka, H. Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 32 , 12363–12379, https://doi.org/10.1007/s00521-020-04832-8 (2020)..
Lima, F. C. N. O. et al. Defining amplifier's gain to maximize the transmission rate in optical systems using evolutionary algorithms and swarm intelligence. Photonic Netw. Commun. 43 , 74–84, https://doi.org/10.1007/s11107-022-00968-w (2022)..
Zhou, P. et al. Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm. Appl. Phys. Lett. 94 , 231106 (2009)..
El-Agmy, R. et al.Adaptive beam profile control using a simulated annealing algorithm. Opt. Express 13 , 6085–6091, https://doi.org/10.1364/opex.13.006085 (2005)..
Zheng, L., Tang, S. S. & Chen, X. F. Isolated sub-100-as pulse generation by optimizing two-color laser fields using simulated annealing algorithm. Opt. Express 17 , 538–543, https://doi.org/10.1364/oe.17.000538 (2009)..
Fang, L. J. et al. Focusing light through random scattering media by simulated annealing algorithm. J. Appl. Phys. 124 , 083104, https://doi.org/10.1063/1.5019238 (2018)..
Lau, K. Y. et al. Development of figure-of-nine laser cavity for mode-locked fiber lasers: a review. Laser Photonics Rev. 2301239, https://doi.org/10.1002/lpor.202301239 (2024).
Yan, P. P. et al. Recent advances, applications, and perspectives in erbium-doped fiber combs. Photonics 11 , 192, https://doi.org/10.3390/photonics11030192 (2024)..
Hirooka, T. et al. A 440 fs, 9.2 GHz hybrid mode-locked erbium fiber laserwith a combination of higher-order solitons and a SESAM saturable absorber. In Proceedings of 2016 Conference on Lasers and Electro-Optics 1–2 (IEEE, 2016).
Luo, Z. C., Luo, A. P. & Xu, W. C. Tunable and switchable m ultiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter. IEEE Photonics J. 3 , 64–70, https://doi.org/10.1109/jphot.2010.2102012 (2011)..
Chow, K. K., Yamashita, S. & Song, Y. W. A widely tunable wavelength converter based on nonlinear polarization rotation in a carbon-nanotube-deposited D-shaped fiber. Opt. Express 17 , 7664–7669, https://doi.org/10.1364/oe.17.007664 (2009)..
Li, Y. J. et al. All-fiber mode-locked laser via short single-wall carbon nanotubes interacting with evanescent wave in photonic crystal fiber. Opt. Express 24 , 23450–23458, https://doi.org/10.1364/oe.24.023450 (2016)..
Xu, Y. M. et al. Nonlinear absorption properties and carrier dynamics in MoS 2 /Graphene van der waals heterostructures. Carbon 165 , 421–427, https://doi.org/10.1016/j.carbon.2020.04.092 (2020)..
Yang, H. R. et al. Bound-state fiber laser mode-locked by a graphene-nanotube saturable absorber. Laser Phys. 25 , 025101, https://doi.org/10.1088/1054-660x/25/2/025101 (2015)..
Pawliszewska, M., Przewłoka, A. & Sotor, J. Stretched-pulse Ho-doped fiber laser mode-locked by graphene based saturable absorber. Proceedings of the SPIE 10512, Fiber Lasers XV - Technology and Systems 105121A (SPIE, 2018).
Maas, D. J. H. C. et al. Growth parameter optimization for fast quantum dot SESAMs. Opt. Express 16 , 18646–18656, https://doi.org/10.1364/oe.16.018646 (2008)..
Tilma, B. W. et al. Recent advances in ultrafast semiconductor disk lasers. Light Sci. Appl. 4 , e310, https://doi.org/10.1038/lsa.2015.83 (2015)..
Saltarelli, F. et al. Self-phase modulation cancellation in a high-power ultrafast thin-disk laser oscillator. Optica 5 , 1603–1606, https://doi.org/10.1364/optica.5.001603 (2018)..
Liu, X. F., Guo, Q. B. & Qiu, J. R. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. 29 , 1605886, https://doi.org/10.1002/adma.201605886 (2017)..
Kurtner, F. X., der Au, J. A. & Keller, U. Mode-locking with slow and fast saturable absorbers-what's the difference. IEEE J. Sel. Top. Quantum Electron. 4 , 159–168, https://do i.org/10.1109/2944.686719 (1998)..
Xu, H. Y. et al. Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments. IEEE J. Sel. Top. Quantum Electron. 24 , 1100209, https://doi.org/10.1109/jstqe.2017.2697045 (2018)..
Wang, J. et al. Wavelength-dependent optical nonlinear absorption of Au-Ag nanoparticles. Appl. Sci. 11 , 3072, https://doi.org/10.3390/app11073072 (2021)..
Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WSe 2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114 , 097403, https://doi.org/10.1103/PhysRevLett.114.097403 (2015)..
Lu, C. H. et al. Effect of surface oxidation on nonlinear optical absorption in WS 2 nanosheets. Applied Surface Science 532 , https://doi.org/10.1016/j.apsusc.2020.147409 (2020)..
Ouyang, Q. Y. et al. Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS 2 nanoflake array films. J. Mater. Chem. C. 2 , 6319–6325 , https://doi.org/10.1039/c4tc00909f (2014)..
Wu, W. Z. et al. Carrier dynamics and optical nonlinearity of alloyed CdSeTe quantum dots in glass matrix. Opt. Mater. Express 7 , 1547–1556, https://doi.org/10.1364/ome.7.001547 (2017)..
Tutt, L. W. & McCahon, S. W. Reverse saturable absorption in metal cluster compounds. Opt. Lett. 15 , 700–702, https://doi.org/10.1364/ol.15.000700 (1990)..
Chen, R. Z., Zheng, X. & Jiang, T. Broadband ultrafast nonlinear absorption and ultra-long exciton relaxation time of black phosphorus quantum dots. Opt. Express 25 , 7507–7519, https://doi.org/10.1364/oe.25.007507 (2017)..
Quan, C. J. et al. Transition from saturable absorption to reverse saturable absorption in MoTe 2 nano-films with thickness and pump intensity. Appl. Surf. Sci. 457 , 115–120, https://doi.org/10.1016/j.apsusc.2018.06.245 (2018)..
Nyk, M. et al. Enhancement of two-photon absorption cross section in CdSe quantum rods. J. Phys. Chem. C. 118 , 17914–17921, https://doi.org/10.1021/jp501843g (2014)..
Wang, G. Z., Baker-Murray, A. A. & Blau, W. J. Saturable absorption in 2D nanomaterials and related photonic devices. Laser Photonics Rev. 13 , 1800282, https://doi.org/10.1002/lpor.201800282 (2019)..
Kavitha, M. K. et al. Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption. Phys. Chem. Chem. Phys. 16 , 25093–25100, https://doi.org/10.1039/c4cp03847a (2014)..
Golubev, A. N. et al. Spectral dependence of nonlinear optical absorption of silica glass with copper nanoparticles. J. Phys. Conf. Ser. 324 , 012038, https://doi.org/10.1088/1742-6596/324/1/012038 (2011)..
Shao, Y. B. et al. Resonant enhancement of nonlinear absorption and ultrafast dynamics of WS 2 nanosheets. Opt. Quantum Electron. 52 , 300, https://doi.org/10.1007/s11082-020-02421-6 (2020)..
Pan, H. et al. Comprehensive study on the nonlinear optical properties of few-layered MoSe 2 nanosheets at 1 μm. J. Alloy. Compd. 806 , 52–57, https://doi.org/10.1016/j.jallcom.2019.07.268 (2019)..
Zheng, X. et al. Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements. Opt. Lett. 40 , 3480–3483, https://doi.org/10.1364/ol.40.003480 (2015)..
Mushtaq, A. et al. Nonlinear optical properties of benzylamine lead(‖) bromide perovskite microdisks in femtosecond regime. Appl. Phys. Lett. 114 , 051902, https://doi.org/10.1063/1.5082376 (2019)..
Ortaç, B. et al. 90-fs stretched-pulse ytterbium-doped double-clad fiber laser. Opt. Lett. 28 , 1305–1307, https://doi.org/10.1364/ol.28.001305 (2003)..
Lefort, L. et al. Practical low-noise stretched-pulse Yb 3+ -doped fiber laser. Opt. Lett. 27 , 291–293, https://doi.org/10.1364/ol.27.000291 (2002)..
Zhao, L. M. et al. Gain dispersion for dissipative soliton generation in all-normal-dispersion fiber lasers. Appl. Opt. 48 , 5131–5137, https://doi.org/10.1364/ao.48.005131 (2009)..
Dvoretskiy, D. A. et al. High-energy, sub-100 fs, all-fiber stretched-pulse mode-locked Er-doped ring laser with a highly-nonlinear resonator. Opt. Express 23 , 33295–33300, https://doi.org/10.1364/oe.23.033295 (2015)..
Radnatarov, D. et al. Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution. Opt. Express 21 , 20626–20631, https://doi.org/10.1364/oe.21.020626 (2013)..
Chen, F. H., Hao, Q. & Zeng, H. P. Optimization of an NALM mode-locked All-PM Er: Fiber laser system. IEEE Photonics Technol. Lett. 29 , 2119–2122, https://doi.org/10.1109/lpt.2017.2765686 (2017)..
Dou, Z. Y. et al. High-power and large-energy dissipative soliton resonance in a compact Tm-doped all-fiber laser. IEEE Photonics Technol. Lett. 31 , 381–384, https://doi.org/10.1109/lpt.2019.2895906 (2019)..
Li, Y. Y. et al. Wavelength-tunable dissipative soliton from Yb-doped fiber laser with nonlinear amplifying loop mirror. Chin. Opt. Lett. 21 , 061402, https://doi.org/10.3788/col202321.061402 (2023)..
Li, Y. Y. et al. 90-fs Yb-doped fiber laser using Gires-Tournois interferometers as dispersion compensation. Opt. Commun. 529 , 129074, https://doi.org/10.1016/j.optcom.2022.129074 (2023)..
Zhao, K. et al. Tunable ytterbium fiber laser mode-locked with a nonlinear amplifying loop mirror. Opt. Laser Technol. 148 , 107764, https://doi.org/10.1016/j.optlastec.2021.107764 (2022)..
Hou, J. et al. High-stability passively mode-locked laser based on dual SESAM. Appl. Phys. B 116 , 347–351, https://doi.org/10.1007/s00340-013-5698-5 (2014)..
Stoliarov, D. A. et al. Linear cavity fiber laser harmonically mode-locked with SESAM. Laser Phys. Lett. 17 , 105102, https://doi.org/10.1088/1612-202X/abacca (2020)..
Ghanbari, S. et al. Femtosecond alexandrite laser passively mode-locked by an InP/InGaP quantum-dot saturable absorber. Opt. Lett. 43 , 232–234, https://doi.org/10.1364/ol.43.000232 (2018)..
Swiderski, J., Michalska, M. & Grzes, P. Mode-locking and self-mode-locking-like operation in a resonantly pumped gain-switched Tm-doped fiber laser. Opt. Commun. 453 , 124406, https://doi.org/10.1016/j.optcom.2019.124406 (2019)..
Wang, J. J. et al. Recent advance of high-energy ultrafast mode-locked oscillators based on Mamyshev mechanism with different starting modes. Opt. Eng. 61 , 120901, https://doi.org/10.1117/1.Oe.61.12.120901 (2022)..
Regelskis, K. et al. Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering. Opt. Lett. 40 , 5255–5258, https://doi.org/10.1364/ol.40.005255 (2015)..
Pitois, S. et al. Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators. J. Opt. Soc. Am. B 25 , 1537–1547, https://doi.org/10.1364/josab.25.001537 (2008)..
Liu, W. et al. Femtosecond Mamyshev oscillator with 10-MW-level peak power. Optica 6 , 194–197, https://doi.org/10.1364/optica.6.000194 (2019)..
Chen, Y. H. et al. Starting dynamics of a linear-cavity femtosecond Mamyshev oscillator. J. Opt. Soc. Am. B 38 , 743–748, https://doi.org/10.1364/josab.415276 (2021)..
Islam, M. N. et al. Soliton intensity-dependent polarization rotation. Opt. Lett. 15 , 21–23, https://doi.org/10.1364/ol.15.000021 (1990)..
Chen, C. J., Wai, P. K. A. & Menyuk, C. R. Soliton fiber ring laser. Opt. Lett. 17 , 417–419, https://doi.org/10.1364/ol.17.000417 (1992)..
Liu, Y. et al. Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier. IEEE Photonics Technol. Lett. 15 , 90–92, https://doi.org/10.1109/LPT.2002.805862 (2003)..
Masuda, S., Niki, S. & Nakazawa, M. Environmentally stable, simple passively mode-locked fiber ring laser using a four-port circulator. Opt. Express 17 , 6613–6622, https://doi.org/10.1364/oe.17.006613 (2009)..
Zhang, Z. X., Zhan, L. & Xia, Y. X. Multiwavelength comb generation in self-starting passively mode-locked fiber laser. Microw. Opt. Technol. Lett. 48 , 1356–1358, https://doi.org/10.1002/mop.21659 (2006)..
Zhao, L. M. et al. Dissipative soliton generation in Yb-fiber laser with an invisib le intracavity bandpass filter. Opt. Lett. 35 , 2756–2758, https://doi.org/10.1364/ol.35.002756 (2010)..
Smirnov, S. et al. Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation. Opt. Express 20 , 27447–27453, https://doi.org/10.1364/oe.20.027447 (2012)..
Peng, J. S. et al. All-fiber ultrashort similariton generation, amplification, and compression at telecommunication band. J. Opt. Soc. Am. B 29 , 2270–2274, https://doi.org/10.1364/josab.29.002270 (2012)..
Yan, Z. Y. et al. Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution. Opt. Express 23 , 4369–4376, https://doi.org/10.1364/oe.23.004369 (2015)..
Shang, X. X. et al. 170 mW-level mode-locked Er-doped fiber laser oscillator based on nonlinear polarization rotation. Appl. Phys. B 125 , 193, https://doi.org/10.1007/s00340-019-7301-1 (2019)..
Jeon, C. G. et al. Highly tunable repetition-rate multiplication of mode-locked lasers using all-fibre harmonic injection locking. Sci. Rep. 8 , 13875, https://doi.org/10.1038/s41598-018-31929-x (2018)..
Lin, G. R. & Chiu, I. H. 110-pJ and 410-fs pulse at 10 GHz generated by single-stage external fiber compression of optically injection-mode-locked semiconductor optical amplifier fiber laser. IEEE Photonics Technol. Lett. 18 , 1010–1012, https://doi.org/10.1109/lpt.2006.873515 (2006)..
Krzempek, K. High-precision passive stabilization of a dissipative soliton resonance laser repetition rate based on optical pulse injection. Opt. Lett. 49 , 4118–4121, https://doi.org/10.1364/ol.520104 (2024)..
Nguyen, D. T., Muramatsu, A. & Morimoto, A. Femtosecond pulse generation by actively modelocked fibre ring laser. Electron. Lett. 49 , 556–557, https://doi.org/10.1049/el.2012.4483 (2013)..
Wang, R. X. et al. High-repetition-rate, stretch-lens-based actively-mode-locked femtosecond fiber laser. Opt. Express 21 , 20923–20930, https://doi.org/10.1364/oe.21.020923 (2013)..
Boncristiano, E. S., Saito, L. A. M. & De Souza, E. A. 396 fs pulse from an asynchronous mode -locked Erbium fiber laser with 2.5 12 GHz repetition rate. Microw. Opt. Technol. Lett. 50 , 2994–2996, https://doi.org/10.1002/mop.23849 (2008)..
Lin, C. Y. et al. Direct generation of 10 GHz 816 fs pulse train from an asynchronous modelocked Er-fiber laser. Proceedings of the Conference on Lasers and Electro-Optics (CLEO) 1147–1149 (2005).
Wang, S. et al. Influence of saturable absorber parameters on the hybrid mode-locking performance of fiber lasers. J. Appl. Phys. 134 , 053104, https://doi.org/10.1063/5.0160100 (2023)..
Hirooka, T. et al. 440 fs, 9.2 GHz regeneratively mode-locked erbium fiber laser with a combination of higher-order solitons and a SESAM saturable absorber. Opt. Express 24 , 24255–24264, https://doi.org/10.1364/oe.24.024255 (2016)..
Sui, Q. et al. Generation of sub-100 fs pulses from a SESAM-NPE hybrid mode-locked Yb-doped fiber laser at a fundamental repetition rate of 1.15GHz. Appl. Opt. 62 , 5921–5925, https://doi.org/10.1364/ao.495054 (2023)..
Krylov, A. A. et al. Ultra-short pulse generation in the hybridly mode-locked erbium-doped all-fibe r ring laser with a distributed polarizer. Laser Phys. Lett. 12 , 065001, https://doi.org/10.1088/1612-2011/12/6/065001 (2015)..
Bogusławski, J. et al. Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb 2 Te 3 saturable absorber. Opt. Express 23 , 29014–29023,https://doi.org/10.1364/oe.23.029014 (2015)..
Dvoretskiy, D. A. et al. Generation of ultrashort pulses with minimum duration of 90 fs in a hybrid mode-locked erbium-doped all-fibre ring laser. Quantum Electron. 46 , 979–981, https://doi.org/10.1070/qel16142 (2016)..
Wei, X. M. et al. A femtosecond hybrid mode-locking fiber ring laser at 409 MHz. Laser Phys. Lett. 10 , 085104, https://doi.org/10.1088/1612-2011/10/8/085104 (2013)..
Li, X., Zou, W. W. & Chen, J. P. 41.9 fs hybridly mode-locked Er-doped fiber laser at 212 MHz repetition rate. Opt. Lett. 39 , 1553–1556, https://doi.org/10.1364/ol.39.001553 (2014)..
Baumgartl, M. et al. Sub-80 fs dissipative soliton large-mode-area fiber laser. Opt. Lett. 35 , 2311–2313, https://doi .org/10.1364/ol.35.002311 (2010)..
Zhang, Y. Y. et al. Robust optical-frequency-comb based on the hybrid mode-locked Er: fiber femtosecond laser. Opt. Express 25 , 21719–21725, https://doi.org/10.1364/oe.25.021719 (2017)..
Liu, S. et al. Single-polarization noise-like pulse generation from a hybrid mode-locked thulium-doped fiber laser. J. Opt. 19 , 045505, https://doi.org/10.1088/2040-8986/aa6267 (2017)..
Liu, W. J. et al. Nonlinear optical properties of MoS 2 -WS 2 heterostructure in fiber lasers. Opt. Express 27 , 6689–6699, https://doi.org/10.1364/oe.27.006689 (2019)..
Chernysheva, M. et al. Double-wall carbon nanotube hybrid mode-locker in Tm-doped fibre laser: a novel mechanism for robust bound-state solitons generation. Sci. Rep. 7 , 44314, https://doi.org/10.1038/srep44314 (2017)..
Lv, Z. G. et al. Flexible double-cladding ytterbium fibre based 9 W mode-locked laser with 102 fs compressible pulse duration. Laser Phys. Lett. 15 , 115109, https://doi.org/10.1088/1612-202X/aad945 (2018)..
Gao, C. X. et al. High energy all-fiber Tm-doped femtosecond soliton laser mode-locked by nonlinear polarization rotation. J. Lightwave Technol. 35 , 2988–2993, https://doi.org/10.1109/jlt.2017.2712759 (2017)..
Kieu, K. et al. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Opt. Lett. 34 , 593–595, https://doi.org/10.1364/ol.34.000593 (2009)..
Lv, Z. G. et al. Fabrication of 16 W all-normal-dispersion mode-locked Yb-doped rod-type fiber laser with large-mode area. Chin. Phys. B 24 , 114203, https://doi.org/10.1088/1674-1056/24/11/114203 (2015)..
Wang, X. Q. et al. L-band efficient dissipative soliton erbium-doped fiber laser with a pulse energyof 6.15 nJ and 3 dB bandwidth of 47.8 nm. J. Lightwave Technol. 37 , 1168–1173, https://doi.org/10.1109/jlt.2018.2889050 (2019)..
Deng, D. H. et al. 55-fs pulse generation without wave-breaking from an all-fiber Erbium-doped ring laser. Opt. Express 17 , 4284–4288, https://doi.org/10.1364/oe.17.004284 (2009)..
Tang, Y. X. et al. Self-similar pulse evolution in a fiber laser with a comb-like dispersion-decreasing fiber. Opt. Lett. 41 , 2290–2293, https://doi.org/10.1364/ol.41.002290 (2016)..
Lan, Y. et al. Enhanced spectral breathing for sub-25 fs pulse generation in a Yb-fiber laser. Opt. Lett. 38 , 1292–1294, https://doi.org/10.1364/ol.38.001292 (2013)..
Li, C. et al. Femtosecond amplifier similariton Yb: fiber laser at a 616 MHz repetition rate. Opt. Lett. 39 , 1831–1833, https://doi.org/10.1364/ol.39.001831 (2014)..
Yang, P. L. et al. 65-fs Yb-doped all-fiber laser using tapered fiber for nonlinearity and dispersion management. Opt. Lett. 43 , 1730–1733, https://doi.org/10.1364/ol.43.001730 (2018)..
Zhou, L. et al. Generation of stretched pulses from an all-polarization-maintaining Er-doped mode-locked fiber laser using nonlinear polarization evolution. Appl. Phys. Express 12 , 052017, https://doi.org/10.7567/1882-0786/ab15c0 (2019)..
Li, P. et al. 312 MHz, compact all-normal-dispersion Yb: fiber ring laser with an integrated WDM-ISO. Chin. Opt. Lett. 13 , 031403, https://doi.org/10.3788/col201513.031403 (2015)..
Du, W. X. et al. High-repetition-rate all-fiber femtosecond laser with an optical integrated component. Appl. Opt. 56 , 2504–2509, https://doi.org/10.1364/ao.56.002504 (2017)..
Ilday, F. Ö., Chen, J. & Kärtner, F. X. Generation of sub-100-fs pulses at up to 200 MHz repetition rate from a passively mode-locked Yb-doped fiber laser. Opt. Express 13 , 2716–2721, https://doi.org/10.1364/OPEX.13.002716 (2005)..
Dvoretskiy, D. A. et al. High-energy ultrashort-pulse all-fiber erbium-doped ring laser with improved free-running performance. J. Opt. Soc. Am. B 35 , 2010–2014, https://doi.org/10.1364/josab.35.002010 (2018)..
Boguslawski, J. et al. 80 fs passively mode-locked Er-doped fiber laser. Laser Phys. 25 , 065104, https://doi.org/10.1088/1054-660x/25/6/065104 (2015)..
Peng, J. S. et al. Direct generation of 4.6-nJ 78.9-fs dissipative solitons in an all-fiber net-normal-dispersion Er-doped laser. IEEE Photonics Technol. Lett. 24 , 98–100, https://doi.org/10.1109/lpt.2011.2173186 (2012)..
Liu, X. M. & Pang, M. Revealing the buildup dynamics of harmonic mode-locking states in ultrafast lasers. Laser Photonics Rev. 13 , 1800333, https://doi.org/10.1002/lpor.201800333 (2019)..
Grelu, P. et al. Phase-locked soliton pairs in a stretched-pulse fiber laser. Opt. Lett. 27 , 966–968, https://doi.org/10.1364/ol.27.000966 (2002)..
Krupa, K. et al. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 118 , 243901, https://doi.org/10.1103/PhysRevLett.118.243901 (2017)..
Herink, G. et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356 , 50–54, https://doi.org/10.1126/science.aal5326 (2017)..
Peng, J. S. et al. Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers. Commun. Phys. 1 , 20, https://doi.org/10.1038/s42005-018-0022-7 (2018)..
Wang, Z. Q. et al. Optical soliton molecular complexes in a passively mode-locked fibre laser. Nat. Commun. 10 , 830, https://doi.org/10.1038/s41467-019-08755-4 (2019)..
He, W. et al. Formation of optical supramolecular structures in a fibre laser by tailoring long-range soliton interactions. Nat. Commun. 10 , 5756, https://doi.org/10.1038/s41467-019-13746-6 (2019)..
Liu, Y. S. et al. Phase-tailored assembly and encoding of dissipative soliton molecules. Light Sci. Appl. 12 , 123, https://doi.org/10.1038/s41377-023-01170-x (2023)..
Zhou, Y. et al. Reconfigurable dynamics of optical soliton molecular complexes in an ultrafast thulium fiber laser. Commun. Phys. 5 , 302, https://doi.org/10.1038/s42005-022-01068-x (2022)..
Kurtz, F., Ropers, C. & Herink, G. Resonant excitation and all-optical switching of femtosecond soliton molecules. Nat. Photonics 14 , 9–13, https://doi.org/10.1038/s41566-019-0530-3 (2020)..
Liu, S. L. et al. On-demand harnessing of photonic soliton molecules. Optica 9 , 240–250, https://doi.org/10.1364/optica.445704 (2022)..
Sun, B. et al. Dispersion-compensation-free femtosecond Tm-doped all-fiber laser with a 248 MHz repetition rate. Opt. Lett. 41 , 4052–4055, https://doi.org/10.1364/ol.41.004052 (2016)..
Liu, S. et al. Noise-like pulse generation from a thulium-doped fiber laser using nonlinear polarization rotation with different net anomalous dispersion. Photonics Res. 4 , 318–321, https://doi.org/10.1364/prj.4.000318 (2016)..
Pu, G. Q. et al. Intelligent control of mode-locked femtosecondpulses by time-stretch-assisted real-time spectral analysis. Light Sci. Appl. 9 , 13, https://doi.org/10.1038/s41377-020-0251-x (2020)..
Liu, Y. S. et al. Unveiling manipulation mechanism on internal dynamics of soliton triplets via polarization and gain control. Opt. Lasers Eng. 168 , 107645, https://doi.org/10.1016/j.optlaseng.2023.107645 (2023)..
Wang, Z. Q. et al. Generation of sub-60 fs similariton s at 1.6 μm from an all-fiber Er-doped laser. J. Lightwave Technol. 34 , 4128–4134, https://doi.org/10.1109/jlt.2016.2593702 (2016)..
Mortag, D. et al. Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 μm. Opt. Express 19 , 546–551, https://doi.org/10.1364/oe.19.000546 (2011)..
Liu, H. et al. A 303 MHz fundamental repetition rate femtosecond Er: fiber ring laser. Acta Phys. Sin. 64 , 114210, https://doi.org/10.7498/aps.64.114210 (2015)..
Luo, J. L. et al. Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber lasers. IEEE Photonics J. 6 , 1500608, https://doi.org/10.1109/jphot.2014.2298405 (2014)..
Chédot, C. et al. Mode-locked ytterbium-doped fiber lasers: new perspectives. Fiber Integr. Opt. 27 , 341–354, https://doi.org/10.1080/01468030802268458 (2008)..
Szczepanek, J. et al. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers. Proceedings of the Conference on Lasers and Electro-Optics (CLEO) SM2I. 5 (CLEO, 2017).
Szczepanek, J. et al. Nonlinear polarization evolution of ultrashort pulses in polarization maintaining fibers. Opt. Express 26 , 13590–13604, https://doi.org/10.1364/OE.26.013590 (2018)..
Zhang, W. C. et al. Ultrafast pm fiber ring laser mode-locked by nonlinear polarization evolution with short NPE section segments. Opt. Express 26 , 7934–7941, https://doi.org/10.1364/OE.26.007934 (2018)..
Dong, Z. P. et al. Mode-locked ytterbium-doped fiber laser based on offset-spliced graded index multimode fibers. Opt. Laser Technol. 119 , 105576, https://doi.org/10.1016/j.optlastec.2019.105576 (2019)..
Wang, Z. K. et al. Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking. Opt. Lett. 43 , 2078–2081, https://doi.org/10.1364/ol.43.002078 (2018)..
Li, N. et al. Sub-10ns mode-locked fiber lasers with multimode fiber saturable absorber. Opt. Fiber Technol. 84 , 103708, https://doi.org/10.1016/j.yofte.2024.103708 (2024)..
Chen, T. et al. All-fiber passively mode-locked laser using nonlinear multimode interference of step-index multimode fiber. Photonics Res. 6 , 1033–1039, https://doi.org/10.1364/prj.6.001033 (2018)..
Yang, F. et al. Saturable absorber based on a single mode fiber—graded index fiber—single mode fiber structure with inner micro-cavity. Opt. Express 26 , 927–934, https://doi.org/10.1364/oe.26.000927 (2018)..
Jimenez-Rodriguez, M. et al. Widely power-tunable polarization-independent ultrafast mode-locked fiber laser using bulk inn as saturable absorber. Opt. Express 25 , 5366–5375, https://doi.org/10.1364/oe.25.005366 (2017)..
Wang, L., Chong, A. & Haus, J. W. Numerical modeling of mode-locked fiber lasers with a fiber-based saturable-absorber. Opt. Commun. 383 , 386–390, https://doi.org/10.1016/j.optcom.2016.09.035 (2017)..
Wang, Y. Z. et al. Recent advances in real-time spectrum measurement of soliton dynamics by dispersive Fourier transformation. Rep. Prog. Phys. 83 , 116401, https://doi.org/10.1088/1361-6633/abbcd7 (2020)..
Girardot, J. et al. Autosetting mode-locked laser using an evolutionary algorithm and time-stretch spectral characterization. IEEE J. Sel. Top. Quantum Electron. 26 , 1100108, https://doi.org/10.1109/jstqe.2020.2985297 (2020)..
Pu, G. Q. et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm. Optica 6 , 362–369, https://doi.org/10.1364/optica.6.000362 (2019)..
Pu, G. Q. et al. Automatic mode-locking fiber lasers: progress and perspectives. Sci. China Inf. Sci. 63 , 160404, https://doi.org/10.1007/s11432-020-2883-0 (2020)..
Ryser, M. et al. Self-optimizing additive pulse mode-locked fiber laser: wavelength tuning and selective operation in continuous-wave or mode-locked regime. Proceedings of SPIE 10512, Fiber Lasers XV—Technology and Systems 105121C (SPIE, 2018).
Liu, H., Sun, C. X. & Zhang, H. R. Comprehensive exploration: automatic mode-locking technology and its multidisciplinary applications. Infrared Phys. Technol. 138 , 105247, https://doi.org/10.1016/j.infrared.2024.105247 (2024)..
Hellwig, T. et al. Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation. Appl. Phys. B 101 , 565–570, https://doi.org/10.1007/s00340-010-4224-2 (2010)..
Han, D. D. et al. Automatic mode-locked fiber laser based on adaptive genetic algorithm. Opt. Fiber Technol. 83 , 103677, https://doi.org/10.1016/j.yofte.2024.103677 (2024)..
Abpeikar, S. et al. Automatic collective motion tuning using actor-critic deep reinforcement learning. Swarm Evolut. Comput. 72 , 101085, https://doi.org/10.1016/j.swevo.2022.101085 (2022)..
Baumeister, T., Brunton, S. L. & Kutz, J. N. Deep learning and model predictive control for self-tuning mode-locked lasers. J. Opt. Soc. Am. B 35 , 617–626, https://doi.org/10.1364/josab.35.000617 (2018)..
Ma, X. X. et al. Machine learning method for calculating mode-locking performance of linear cavity fiber lasers. Opt. Laser Technol. 149 , 107883, https://doi.org/10.1016/j.optlastec.2022.107883 (2022)..
Brunton, S. L., Fu, X. & Kutz, J. N. Self-tuning fiber lasers. IEEE J. Sel. Top. Quantum Electron. 20 , 1101408, https://doi.org/10.1109/jstqe.2014.2336538 (2014)..
Genty, G. et al. Machine learning and applications in ultrafast photonics. Nat. Photonics 15 , 91–101, https://doi.org/10.1038/s41566-020-00716-4 (2021)..
Shen, X. L. et al. Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity. Appl. Phys. Lett. 106 , 031117, https://doi.org/10.1063/1.4906396 (2015)..
Shen, X. L., Hao, Q. & Zeng, H. P. Self-tuning mode-locked fiber lasers based on prior collection of polarization settings. IEEE Photonics Technol. Lett. 29 , 1719–1722, https://doi.org/10.1109/lpt.2017.2746818 (2017)..
Olivier, M., Gagnon, M. D. & Piché, M. Automated mode locking in nonlinear polarization rotation fiber lasers by detection of a discontinuous jump in the polarization state. Opt. Express 23 , 6738–6746, https://doi.org/10.1364/oe.23.006738 (2015)..
Olivier, M., Gagnon, M. D. & Habel, J. Automation of mode locking in a nonlinear polarization rotation fiber laser through output polarization measurements. J. Vis. Exp. e53679, https://doi.org/10.3791/53679 (2016).
Pu, G. Q. et al. Programmable and fast-switchable passively harmonic mode-locking fiber laser. Proceedings of the Optical Fiber Communication Conference W2A. 9 (Optica Publishing Group, 2018).
Wu, H. H. et al. Automatic generation of noise-like or mode-locked pulses in an ytterbium-doped fiber laser by using two-photon-induced current for feedback. IEEE Photonics J. 10 , 7105608, https://doi.org/10.1109/jphot.2018.2880772 (2018)..
Woodward, R. I. & Kelleher, E. J. R. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers. Opt. Lett. 42 , 2952–2955, https://doi.org/10.1364/ol.42.002952 (2017)..
Pu, G. Q. et al. Genetic algorithm-based fast real-time automatic mode-locked fiber laser. IEEE Photonics Technol. Lett. 32 , 7–10, https://doi.org/10.1109/lpt.2019.2954806 (2020)..
Fu, X. & Kutz, J. N. High-energy mode-lock ed fiber lasers using multiple transmission filters and a genetic algorithm. Opt. Express 21 , 6526–6537, https://doi.org/10.1364/oe.21.006526 (2013)..
Andral, U. et al. Fiber laser mode locked through an evolutionary algorithm. Optica 2 , 275–278, https://doi.org/10.1364/optica.2.000275 (2015)..
Andral, U. et al. Toward an autosetting mode-locked fiber laser cavity. J. Opt. Soc. Am. B 33 , 825–833, https://doi.org/10.1364/josab.33.000825 (2016)..
Woodward, R. I. & Kelleher, E. J. R. Towards 'smart lasers': self-optimisation of an ultrafast pulse source using a genetic algorithm. Sci. Rep. 6 , 37616, https://doi.org/10.1038/srep37616 (2016)..
Winters, D. G. et al. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser. Opt. Express 25 , 33216–33225, https://doi.org/10.1364/oe.25.033216 (2017)..
Zhu, Q. B. et al. Auto-setting multi-soliton temporal spacing in a fiber laser by a hybrid GA-PSO algorithm. Opt. Express 31 , 40498–40507, https://doi.org/10.1364/oe.502123 (202 3)..
Kutz, J. N. & Brunton, S. L. Intelligent systems for stabilizing mode-locked lasers and frequency combs: machine learning and equation-free control paradigms for self-tuning optics. Nanophotonics 4 , 459–471, https://doi.org/10.1515/nanoph-2015-0024 (2015)..
Kutz, J. N., Brunton, S. & Fu, X. Machine learning for self-tuning optical systems. Proceedings of the World Congress on Engineering (WCE) 70–73 (WCE, 2015).
Fu, X., Brunton, S. L. & Kutz, J. N. Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation. Opt. Express 22 , 8585–8597, https://doi.org/10.1364/oe.22.008585 (2014)..
Martinez-Angulo, J. R. et al. Automated data acquisition system using a neural network for prediction response in a mode-locked fiber laser. Electronics 9 , 1181, https://doi.org/10.3390/electronics9081181 (2020)..
Li, J. et al. The soft actor-critic algorithm for automatic mode-locked fiber lasers. Opt. Fiber Technol. 81 , 103579, https://doi.org/10.1016/j.yofte.2023.103579 (2023)..
Nonaka, M., Agüero, M. & Kovalsky, M. Machine learning algorithms predict experimental output of chaotic lasers. Opt. Lett. 48 , 1060–1063, https://doi.org/10.1364/ol.483662 (2023)..
Brunton, S. L., Fu, X. & Kutz, J. N. Extremum-seeking control of a mode-locked laser. IEEE J. Quantum Electron. 49 , 852–861, https://doi.org/10.1109/jqe.2013.2280181 (2013)..
Ma, X. X. et al. Pulse convergence analysis and pulse information calculation of NOLM fiber mode-locked lasers based on machine learning method. Opt. Laser Technol. 163 , 109390, https://doi.org/10.1016/j.optlastec.2023.109390 (2023)..
Nian, R., Liu, J. F. & Huang, B. A review on reinforcement learning: introduction and applications in industrial process control. Comput. Chem. Eng. 139 , 106886, https://doi.org/10.1016/j.compchemeng.2020.106886 (2020)..
Arulkumaran, K. et al. Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34 , 26–38, https://doi.org/10.1109/msp.2017.2743240 (2017)..
Albarrán-Arriagada, F. et al. Reinforcement learning for semi-autonomous approximate quantum eigensolver. Mach. Learn. Sci. Technol. 1 , 015002, https://doi.org/10.1088/2632-2153/ab43b4 (2020)..
Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362 , 1140–1144, https://doi.org/10.1126/science.aar6404 (2018)..
Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529 , 484–489, https://doi.org/10.1038/nature16961 (2016)..
Montáns, F. J. et al. Data-driven modeling and learning in science and engineering. Comptes Rendus Mécanique 347 , 845–855, https://doi.org/10.1016/j.crme.2019.11.009 (2019)..
Yan, Q. Q. et al. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers. Photonics Res. 9 , 1493–1501, https://doi.org/10.1364/prj.428117 (2021)..
Fang, Z. W. et al. Data-driven inverse design of mode-locked fiber lasers. Opt. Express 31 , 41794–41803, https://doi.org/10.1364/oe.503958 (2023)..
Li, Z. et al. Deep reinforcement with spectrum series learning control for a mode-locked fiber laser. Photonics Res. 10 , 1491–1500, https://doi.org/10.1364/prj.455493 (2022)..
Pu, G. Q. et al. Fast predicting the complex nonlinear dynamics of mode-locked fiber laser by a recurrent neural network with prior information feeding. Laser Photonics Rev. 17 , 2200363, https://doi.org/10.1002/lpor.202200363 (2023)..
Pu, G. Q. et al. Intelligent single-cavity dual-comb source with fast locking. J. Lightwave Technol. 41 , 593–598, https://doi.org/10.1109/jlt.2022.3220258 (2023)..
Zhao, M. H. et al. Machine-learning iterative optimization for all polarization-maintaining linear cavity Er: fiber laser. Opt. Lett. 48 , 4893–4896, https://doi.org/10.1364/ol.497297 (2023)..
Luo, S. Y. et al. AI-algorithm-assisted 895-nm praseodymium laser emitting sub-100-fs pulses. Opt. Lett. 48 , 6120–6123, https://doi.org/10.1364/OL.506628 (2023)..
Liu, G. M. et al. Polarization control parameters evolution of genetic algorithm-based 2 μm Tm-doped fiber laser. Microw. Opt. Technol. Lett. 66 , e34167, https://doi.org/10.1002/mop.34167 (2024)..
Guo, P. et al. Intelligent laser emitting and mode locking of solid-state lasers using human-like algorithms. Laser Photonics Rev. 18 , 2301209, https://doi.org/10.1002/lpor.202301209 (2024)..
Herink, G. et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photonics 10 , 321–326, https://doi.org/10.1038/nphoton.2016.38 (2016)..
Shi, K. New soliton dynamics revealed in the normal dispersion region. Light Sci. Appl. 11 , 67, https://doi.org/10.1038/s41377-022-00748-1 (2022)..
Cao, B. et al. Spatiotemporal mode-locking and dissipative solitons in multimode fiber lasers. Light Sci. Appl. 12 , 260, https://doi.org/10.1038/s41377-023-01305-0 (2023)..
Lecaplain, C. et al. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett. 108 , 233901, https://doi.org/10.1103/PhysRevLett.108.233901 (2012)..
Wang, Z. H. et al. Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser. Opt. Express 24 , 14709–14716, https://doi.org/10.1364/oe.24.014709 (2016)..
Meng, F. C. et al. Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser. Nat. Commun. 12 , 5567, https://doi.org/10.1038/s41467-021-25861-4 (2021)..
Liu, X. M., Yao, X. K. & Cui, Y. D. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121 , 023905, https://doi.org/10.1103/PhysRevLett.121.023905 (2018)..
Sun, S. Q. et al. Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser. Opt. Express 26 , 20888–20901, https://doi.org/10.1364/oe.26.020888 (2018)..
Soto-Crespo, J. M., Akhmediev, N. & Ankiewicz, A. Pulsating, creeping, and erupting solitons in dissipative systems. Phys. Rev. Lett. 85 , 2937–2940, https://doi.org/10.1103/PhysRevLett.85.2937 (2000)..
Cundiff, S. T., Soto-Crespo, J. M. & Akhmediev, N. Experimental evidence for soliton explosions. Phys. Rev. Lett. 88 , 073903, https://doi.org/10.1103/PhysRevLett.88.073903 (2002)..
Runge, A. F. J., Broderick, N. G. R. & Erkintalo, M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica 2 , 36–39, https://doi.org/10.1364/optica.2.000036 (2015)..
Peng, J. S. & Zeng, H. P. Soliton collision induced explosions in a mode-locked fibre laser. Commun. Phys. 2 , 34, https://doi.org/10.1038/s42005-019-0134-8 (2019)..
Zou, D. F. et al. Synchronization of the internal dynamics of optical soliton molecules. Optica 9 , 1307–1313, https://doi.org/10.1364/optica.473819 (2022)..
You, Y. J. et al. Ultrahigh-resolution optical coherence tomography at 1.3 μm central wavelength by using a supercontinuum source pumped by noise-like pulses. Laser Phys. Lett. 13 , https://doi.org/10.1088/1612-2011/13/2/025101 (2016)..
Keren, S. et al. Data storage in optical fibers and reconstruction by use of low-coherence spectral interferometry. Opt. Lett. 27 , 125–127, https://doi.org/10.1364/ol.27.000125 (2002)..
Chen, X. et al. Dynamic gain driven mode-locking in GHz fiber laser. Light Sci. Appl. 13 , 265, https://doi.org/10.1038/s41377-024-01613-z (2024)..
Wang, X. J. et al. Laser manufacturing of spatial resolution approaching quantum limit. Light Sci. Appl. 13 , 6, https://doi.org/10.1038/s41377-023-01354-5 (2024)..
Xiao, G. et al. Giant enhancement of nonlinear harmonics of an optical-tweezer phonon laser. eLight 4 , 17, https://doi.org/10.1186/s43593-024-00064-8 (2024)..
Zhao, H. et al. Integratedpreparation and manipulation of high-dimensional flying structured photons. eLight 4 , 10, https://doi.org/10.1186/s43593-024-00066-6 (2024)..
Zhou, Z. et al. Prospects and applications of on-chip lasers. eLight 3 , 1, https://doi.org/10.1186/s43593-022-00027-x (2023)..
Chen, J. H. et al. Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology. Light Sci. Appl. 10 , 78, https://doi.org/10.1038/s41377-021-00520-x (2021)..
Huang, L. et al. Imaging/nonimaging microoptical elements and stereoscopic systems based on femtosecond laser direct writing. Light Adv. Manuf. 4 , 543–569, https://doi.org/10.37188/lam.2023.037 (2024)..
Kim, C. et al. Parity-time symmetry enabled ultra-efficient nonlinear optical signal processing. eLight 4 , 6, https://doi.org/10.1186/s43593-024-00062-w (2024)..
Lin, H. N. & Cheng, J. X. Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science. eLight 3 , 6, https://doi.org/10.1186/s43593-022-00038-8 (2023)..
Li, W. et al. Delivery of luminescent particles to plants for information encoding and storage. Light Sci. Appl. 13 , 217, https://doi.org/10.1038/s41377-024-01518-x (2024) ..
Li, G. H. Y. et al. Deep learning with photonic neural cellular automata. Light Sci. Appl. 13 , 283, https://doi.org/10.1038/s41377-024-01651-7 (2024)..
Ruan, Z. S. et al. Flexible orbital angular momentum mode switching in multimode fibre using an optical neural network chip. Light Adv. Manuf. 5 , 296–307, https://doi.org/10.37188/lam.2024.023 (2024)..
Fu, T. Z. et al. Optical neural networks: progress and challenges. Light Sci. Appl. 13 , 263, https://doi.org/10.1038/s41377-024-01590-3 (2024)..
Xian, A. H. et al. Adaptive genetic algorithm-based 2 μm intelligent mode-locked fiber laser. OSA Contin. 4 , 2747–2756, https://doi.org/10.1364/OSAC.440960 (2021)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution