无数据
1.Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
2.MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
3.Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
4.Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
5.Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
6.Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
7.Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
Yuzhi Shi (yzshi@tongji.edu.cn)
Cheng-Wei Qiu (chengwei.qiu@nus.edu.sg)
Hui Zhang (zh0012ui@e.ntu.edu.sg)
Xinbin Cheng (chengxb@tongji.edu.cn)
Received:03 July 2024,
Revised:02 December 2024,
Accepted:24 December 2024,
Published Online:27 February 2025,
Published:31 May 2025
Scan QR Code
Yang, M. et al. Optical sorting: past, present and future. Light: Science & Applications, 14, 1188-1234 (2025).
Yang, M. et al. Optical sorting: past, present and future. Light: Science & Applications, 14, 1188-1234 (2025). DOI: 10.1038/s41377-024-01734-5.
Optical sorting combines optical tweezers with diverse techniques
including optical spectrum
artificial intelligence (AI) and immunoassay
to endow unprecedented capabilities in particle sorting. In comparison to other methods such as microfluidics
acoustics and electrophoresis
optical sorting offers appreciable advant
ages in nanoscale precision
high resolution
non-invasiveness
and is becoming increasingly indispensable in fields of biophysics
chemistry
and materials science. This review aims to offer a comprehensive overview of the history
development
and perspectives of various optical sorting techniques
categorised as
passive
and
active
sorting methods. To begin
we elucidate the fundamental physics and attributes of both conventional and exotic optical forces. We then explore sorting capabilities of active optical sorting
which fuses optical tweezers with a diversity of techniques
including Raman spectroscopy and machine learning. Afterwards
we reveal the essential roles played by deterministic light fields
configured with lens systems or metasurfaces
in the passive sorting of particles based on their varying sizes and shapes
sorting resolutions and speeds. We conclude with our vision of the most promising and futuristic directions
including AI-facilitated ultrafast and bio-morphology-selective sorting. It can be envisioned that optical sorting will inevitably become a revolutionary tool in scientific research and practical biomedical applications.
Zhu, J. et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120 , 851–918 (2020)..
Wu, S. H., Mou, C. Y. & Lin, H.P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 42 , 3862–3875 (2013)..
Astruc, D. Introduction: nanoparticles in catalysis. Chem. Rev. 120 , 461–463 (2020)..
Jeevanandam, J. et al. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9 , 1050–1074 (2018)..
Elahi, N., Kamali, M. & Baghe rsad, M. H. Recent biomedical applications of gold nanoparticles: a review. Talanta 184 , 537–556 (2018)..
Lai, S. L. et al. Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett. 77 , 99–102 (1996)..
Shi, Y. Z. et al. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci. Adv. 4 , eaao0773 (2018)..
Halperin, W. P. Quantum size effects in metal particles. Rev. Mod. Phys. 58 , 533–606 (1986)..
Hayden, B. E. Particle size and support effects in electrocatalysis. Acc. Chem. Res. 46 , 1858–1866 (2013)..
Wei, H. & Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42 , 6060–6093 (2013)..
Liu, L. C. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118 , 4981–5079 (2018)..
Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9 , 615–627 (2010)..
Hsu, C. W. et al. Bound states in the continuum. Nat. Rev. Mater. 1 , 16048 (2016)..
Koshelev, K., Bogdanov, A. & Kivshar, Y. Meta-optics and bound states in the continuum. Sci. Bull. 64 , 836–842 (2019)..
Melik-Gaykazyan, E. et al. From fano to Quasi-BIC resonances in individual dielectric nanoantennas. Nano Lett. 21 , 1765–1771 (2021)..
Zhu, T. T. et al. Extraordinary multipole modes and ultra-enhanced optical lateral force by chirality. Phys. Rev. Lett. 125 , 043901 (2020)..
Li, X. et al. The significance of exosomes in the development and treatment of hepatocellular carcinoma. Mol. Cancer 19 , 1 (2020)..
Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367 , eaau6977 (2020)..
Sitar, S. et al. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal. Chem. 87 , 9225–9233 (2015)..
Champion, J. A., Katare, Y. K. & Mitragotri, S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Controlled Release 121 , 3–9 (2007)..
Stolnik, S., Illum, L. & Davis, S. S. Long circulating microparticulate drug carriers. Adv. Drug Deliv. Rev. 64 , 290–301 (2012)..
Goodenough, J. B. & Park, K. S. The Li-Ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135 , 1167–1176 (2013)..
Liu, X. H. et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6 , 1522–1531 (2012)..
Shi, T. et al. High active material loading in all-solid-state battery electrode via particle size optimization. Adv. Energy Mater. 10 , 1902881 (2020)..
Lim, J. M. et al. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer. ACS Nano 8 , 6056–6065 (2014)..
O'Brien, S., Brus, L. & Murray, C. B. Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123 , 12085–12086 (2001)..
Kimling, J. et al. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110 , 15700–15707 (2006)..
Jamkhande, P. G. et al. Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 53 , 101174 (2019)..
Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117 , 8041–8093 (2017)..
Li, W., Suzuki, T. & Minami, H. A facile method for preparation of polymer particles having a “Cylindrical” shape. Angew. Chem. Int. Ed. 57 , 9936–9940 (2018)..
Moffitt, J. R. et al. Recent advances in optical tweezers. Annu. Rev. Biochem. 77 , 205–228 (2008)..
Fazal, F. M. & Block, S. M. Optical tweezers study life under tension. Nat. Photonics 5 , 318–321 (2011)..
Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5 , 491–505 (2008)..
Shi, Y. Z. et al. Optical manipulation with metamaterial structures. Appl. Phys. Rev. 9 , 031303 (2022)..
Shi, Y. Z. et al. Advances in light transverse momenta and optical lateral forces. Adv. Opt. Photonics 15 , 835–906 (2023)..
Gieseler, J. et al. Optical tweezers — from calibration to applications: a tutorial. Adv. Opt. Photonics 13 , 74–241 (2021)..
Zhou, L. M. et al. Recent progress on optical micro/nanomanipulations: structured forces, structured particles, and synergetic applications. ACS Nano 16 , 13264–13278 (2022)..
Qin, J. et al. Metasurface micro/nano-optical sensors: principles and applications. ACS Nano 16 , 11598–11618 (2022)..
Lin, D. M. et al. Dielectric gradient metasurface optical elements. Science 345 , 298–302 (2014)..
Wang, K. et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361 , 1104–1108 (2018)..
Yin, X. B. et al. Photonic spin hall effect at metasurfaces. Science 339 , 1405–1407 (2013)..
Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5 , 604–620 (2020)..
Dorrah, A. H. & Capasso, F. Tunable structured light with flat optics. Science 376 , eabi6860 (2022)..
Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24 , 156–159 (1970)..
Ashkin, A. et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11 , 288–290 (1986)..
Ashkin, A. Applications of laser radiation pressure. Science 210 , 1081–1088 (1980)..
Gong, S. P. & Macdonald, M. Review on solar sail technology. Astrodynamics 3 , 93–125 (2019)..
Shen, K. H. et al. On-chip optical levitation with a metalens in vacuum. Optica 8 , 1359–1362 (2021)..
Gonzalez-Ballestero, C. et al. Levitodynamics: levitation and control of microscopic objects in vacuum. Science 374 , eabg3027 (2021)..
Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367 , 892–895 (2020)..
Yang, B. et al. Cooling and entangling ultracold atoms in optical lattices. Science 369 , 550–553 (2020)..
Kaufman, A. M., Lester, B. J. & Regal, C. A. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X 2 , 041014 (2012)..
Kastberg, A. et al. Adiabatic cooling of cesium to 700 nK in an optical lattice. Phys. Rev. Lett. 74 , 1542–1545 (1995)..
Buican, T. N. et al. Automated single-cell manipulation and sorting by light trapping. Appl. Opt. 26 , 5311–5316 (1987)..
Imasaka, T. et al. Optical chromatography. Anal. Chem. 67 , 1763–1765 (1995)..
Hart, S. J. & Terray, A. V. Refractive-index-driven separation of colloidal polymer particles using optical chromatography. Appl. Phys. Lett. 83 , 5316–5318 (2003)..
Klimov, V. V. & Letokhov, V. S. Selective sorting of neutral atoms and molecules by the gradient dipole force in the near field of laser radiation. Opt. Commun. 110 , 87–93 (1994)..
Hong, C. C., Yang, S. & Ndukaife, J. C. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Nat. Nanotechnol. 15 , 908–913 (2020)..
Shi, Y. Z. et al. Multifunctional virus manipulation with large-scale arrays of all-dielectric resonant nanocavities. Laser Photonics Rev. 16 , 2100197 (2022)..
Cao, T. & Qiu, Y. M. Lateral sorting of chiral nanoparticles using Fano-enhanced chiral force in visible region. Nanoscale 10 , 566–574 (2018)..
Roichman, Y. et al. Optical forces arising from phase gradients. Phys. Rev. Lett. 100 , 013602 (2008)..
Guo, C. S., Yu, Y. N. & Hong, Z. P. Optical sorting using an array of optical vortices with fractional topological charge. Opt. Commun. 283 , 1889–1893 (2010)..
Nan, F. & Yan, Z. J. Creating multifunctional optofluidic potential wells for nanoparticle manipulation. Nano Lett. 18 , 7400–7406 (2018)..
Nan, F. & Yan, Z. J. Sorting metal nanoparticles with dynamic and tunable optical driven forces. Nano Lett. 18 , 4500–4505 (2018)..
Nan, F. & Yan, Z. J. Optical sorting at the single-particle level with single-nanometer precision using coordinated intensity and phase gradient forces. ACS Nano 14 , 7602–7609 (2020)..
Brzobohatý, O. et al. Experimental demonstration of optical transport, sorting and self-arrangement using a 'tractor beam'. Nat. Photonics 7 , 123–127 (2013)..
Shilkin, D. A. et al. Directional optical sorting of silicon nanoparticles. ACS Photonics 4 , 2312–2319 (2017)..
Abbassi, M. A. & Mehrany, K. Self-induced backaction in optical waveguides. Opt. Express 30 , 42967–42981 (2022)..
Wang, S. B. & Chan, C. T. Lateral optical force on chiral particles near a surface. Nat. Commun. 5 , 3307 (2014)..
Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5 , 3300 (2014)..
Ying, X. Y. et al. Synthesis of multiple longitudinal polarization vortex structures and its application in sorting chiral nanoparticles. Opt. Express 29 , 19001–19014 (2021)..
Shi, Y. Z. et al. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. Light Sci. Appl. 9 , 62 (2020)..
Li, H. et al. Optical pulling forces and their applications. Adv. Opt. Photonics 12 , 288–366 (2020)..
Ashkin, A. & Gordon, J. P. Stability of radiation-pressure particle traps: an optical Earnshaw theorem. Opt. Lett. 8 , 511–513 (1983)..
Nieto-Vesperinas, M. et al. Optical forces on small magnetodielectric particles. Opt. Express 18 , 11428–11443 (2010)..
Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical J. 61 , 569–582 (1992)..
Bustamante, C., Bryant, Z. & Smith, S. B. Ten years of tension: single-molecule DNA mechanics. Nature 421 , 423–427 (2003)..
Arias-González, J. R. & Nieto-Vesperinas, M. Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. J. Optical Soc. Am. A 20 , 1201–1209 (2003)..
Ch aumet, P. C. & Nieto-Vesperinas, M. Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett. 25 , 1065–1067 (2000)..
Kawauchi, H. et al. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam. Opt. Lett. 32 , 1839–1841 (2007)..
Chen, J. et al. Optical pulling force. Nat. Photonics 5 , 531–534 (2011)..
Lepeshov, S. & Krasnok, A. Virtual optical pulling force. Optica 7 , 1024–1030 (2020)..
Shvedov, V. et al. A long-range polarization-controlled optical tractor beam. Nat. Photonics 8 , 846–850 (2014)..
Otte, E. & Denz, C. Optical trapping gets structure: structured light for advanced optical manipulation. Appl. Phys. Rev. 7 , 041308 (2020)..
Shi, Y. Z. et al. Stable optical lateral forces from inhomogeneities of the spin angular momentum. Sci. Adv. 8 , eabn2291 (2022)..
Zhou, Y. et al. Optical forces on multipoles induced by the belinfante spin momentum. Laser Photonics Rev. 17 , 2300245 (2023)..
Antognozzi, M. et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Nat. Phys. 12 , 731–735 (2016)..
Raman, C. V. & Krishnan, K. S. A new type of secondary radiation. Nature 121 , 501–502 (1928)..
Xie, C. G., Chen, D. & Li, Y. Q. Raman sorting and identification of single living micro-organisms with optical tweezers. Opt. Lett. 30 , 1800–1802 (2005)..
Lin, J. R., Fallahi-Sichani, M. & Sorger, P. K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun. 6 , 8390 (2015)..
Pan, C. C. et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods 13 , 859–867 (2016)..
Zhang, X. D. et al. Single-layered graphitic-C 3 N 4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv. Mater. 26 , 4438–4443 (2014)..
Takov, K., Yellon, D. M. & Davidson, S. M. Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. J. Extracell. Vesicles 6 , 1388731 (2017)..
Yun, Y., Cho, Y. W. & Park, K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev. 65 , 822–832 (2013)..
Lu, D. et al. Imidazole-bearing polymeric micelles for enhanced cellular uptake, rapid endosomal escape, and on-demand cargo release. AAPS Pharm. Sci. Tech. 19 , 2610–2619 (2018)..
Peng, X. J. et al. An effective minor groove binder as a red fluorescent marker for live‐cell DNA imaging and quantification. Angew. Chem. 123 , 4266–4269 (2011)..
Wang, B. H. et al. A Nile blue based infrared fluorescent probe: imaging tumors that over-express cyclooxygenase-2. Chem. Commun. 51 , 792–795 (2015)..
Zhang, S. et al. A BODIPY-based fluorescent dye for mitochondria in living cells, with low cytotoxicity and high photostability. Org. Biomolecular Chem. 11 , 555–558 (2013)..
Vickovic, S. et al. SM-Omics is an automated platform for high-throughput spatial multi-omics. Nat. Commun. 13 , 795 (2022)..
Ericsson, M. et al. Sorting out bacterial viability with optical tweezers. J. Bacteriol. 182 , 5551–5555 (2000)..
Zheng, B. et al. Optical tweezers assisted analyzing and sorting of tumor cells tagged with fluorescence nanospheres in a microfluidic chip. Sens. Actuators B: Chem. 368 , 132173 (2022)..
Schwaferts, C. et al. Nanoplastic analysis by online coupling of Raman microscopy and field-flow fractionation enabled by optical tweezers. Anal. Chem. 92 , 5813–5820 (2020)..
Wu, M. Y. et al. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers. Sci. Rep. 7 , 42930 (2017)..
Grover, S. C. et al. Automated single-cell sorting system based on optical trapping. J. Biomed. Opt. 6 , 14–22 (2001)..
Wang, X. L. et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab a Chip 11 , 3656–3662 (2011)..
Zhang, H. et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun. 12 , 457 (2021)..
Yu, B. Y. et al. An integrated microfluidic device for the sorting of yeast cells using image processing. Sci. Rep. 8 , 3550 (2018)..
Kusakci, A. O., Ayvaz, B. & Karakaya, E. Towards an autonomous human chromosome classification system using Competitive Support Vector Machines Teams (CSVMT). Expert Syst. Appl. 86 , 224–234 (2017)..
Guo, Z. Y. et al. A method for real-time mechanical characterisation of microcapsules. Biomech. Modeling Mechanobiol. 22 , 1209–1220 (2023)..
Wang, X. Y. et al. A particle swarm algorithm optimization‐based SVM–KNN algorithm for epileptic EEG recognition. Int. J. Intell. Syst. 37 , 11233–11249 (2022)..
Medema, M. H. et al. A predicted physicochemically distinct sub-proteome associated with the intracellular organelle of the anammox bacterium Kuenenia stuttgartiensis . BMC Genomics 11 , 299 (2010)..
Shen, L. S. N. et al. SERS studies on normal epithelial and cancer cells derived from clinical breast cancer specimens. Spectrochimica Acta Part A: Mol. Biomolecular Spectrosc. 237 , 118364 (2020)..
Ginley, B. et al. Computational segmentation and classification of diabetic glomerulosclerosis. J. Am. Soc. Nephrol. 30 , 1953–1967 (2019)..
Bustamante, C. J. et al. Optical tweezers in single-molecule biophysics. Nat. Rev. Methods Prim. 1 , 25 (2021)..
Pesce, G. et al. Optical tweezers: theory and practice. Eur. Phys. J. 135 , 949 (2020)..
Volpe, G. et al. Roadmap for optical tweezers. J. Phys. : Photonics 5 , 022501 (2023)..
Canós Valero, A. et al. Nanovortex‐driven all‐dielectric optical diffusion boosting and sorting concept for lab‐on‐a‐chip platforms. Adv. Sci. 7 , 1903049 (2020)..
Novitsky, A., Qiu, C. W. & Wang, H. F. Single gradientless light beam drags particles as tractor beams. Phys. Rev. Lett. 107 , 203601 (2011)..
Ding, W. Q. et al. Photonic tractor beams: a review. Adv. Photonics 1 , 024001 (2019)..
Solomon, M. L. et al. Nanophotonic platforms for chiral sensing and separation. Acc. Chem. Res. 53 , 588–598 (2020)..
Shi, H. S. et al. Optical binding and lateral forces on chiral particles in linearly polarized plane waves. Phys. Rev. A 101 , 043808 (2020)..
Zheng, H. X. et al. General formulations for computing the optical gradient and scattering forces on a spherical chiral particle immersed in genericmonochromatic optical fields. Phys. Rev. A 101 , 053830 (2020)..
Cipparrone, G. et al. Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device. Adv. Mater. 23 , 5773–5778 (2011)..
Tkachenko, G. & Brasselet, E. Helicity-dependent three-dimensional optical trapping of chiral microparticles. Nat. Commun. 5 , 4491 (2014)..
Yamanishi, J. et al. Optical gradient force on chiral particles. Sci. Adv. 8 , eabq2604 (2022)..
Fang, L. & Wang, J. Optical trapping separation of chiral nanoparticles by subwavelength slot waveguides. Phys. Rev. Lett. 127 , 233902 (2021)..
Shang, Q. C. et al. Analysis of the radiation force and torque exerted on a chiral sphere by a Gaussian beam. Opt. Express 21 , 8677–8688 (2013)..
Tkachenko, G. & Brasselet, E. Optofluidic sorting of material chirality by chiral light. Nat. Commun. 5 , 3577 (2014)..
Gao, D. L. et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl. 6 , e17039 (2017)..
Nieminen, T. A. et al. Optical tweezers computational toolbox. J. Opt. A: Pure Appl. Opt. 9 , S196–S203 (2007)..
Lu, C. F. et al. Nanoparticle deep-subwavelength dynamics empowered by optical meron–antimeron topology. Nano Lett. 24 , 104–113 (2024)..
García-Palacios, J. L. & Lázaro, F. J. Langevin-dynamics study of the dynamical properties of small magnetic particles. Phys. Rev. B 58 , 14937–14958 (1998)..
Kheifets, S. et al. Observation of brownian motion in liquids at short times: instantaneous velocity and memory loss. Science 343 , 1493–1496 (2014)..
Shi, Y. Z. et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat. Commun. 9 , 815 (2018)..
Minopoli, A. et al. ISO-FLUCS: symmetrization of optofluidic manipulations in quasi-isothermal micro-environments. eLight 3 , 16 (2023)..
Stoev, I. D. et al. Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap. eLight 1 , 7 (2021)..
Kemp, B. A., Grzegorczyk, T. M. & Kong, J. A. Optic al momentum transfer to absorbing mie particles. Phys. Rev. Lett. 97 , 133902 (2006)..
Riba, J. et al. Single-cell dispensing and 'real-time' cell classification using convolutional neural networks for higher efficiency in single-cell cloning. Sci. Rep. 10 , 1193 (2020)..
Isozaki, A. et al. A practical guide to intelligent image-activated cell sorting. Nat. Protoc. 14 , 2370–2415 (2019)..
Herbig, M. et al. Label-free imaging flow cytometry for analysis and sorting of enzymatically dissociated tissues. Sci. Rep. 12 , 963 (2022)..
Bhandari, A. K. et al. Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy. Expert Syst. Appl. 41 , 3538–3560 (2014)..
Khairuzzaman, A. K. M. & Chaudhury, S. Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Syst. Appl. 86 , 64–76 (2017)..
Abd El Aziz, M., Ewees, A. A. & Hassanien, A. E. Whale optimization algorithm and moth-flame optimization for m ultilevel thresholding image segmentation. Expert Syst. Appl. 83 , 242–256 (2017)..
Zhou, J. X. et al. Optical edge detection based on high-efficiency dielectric metasurface. Proc. Natl Acad. Sci. USA 116 , 11137–11140 (2019)..
Versaci, M. & Morabito, F. C. Image edge detection: a new approach based on fuzzy entropy and fuzzy divergence. Int. J. Fuzzy Syst. 23 , 918–936 (2021)..
Dorafshan, S., Thomas, R. J. & Maguire, M. Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete. Constr. Build. Mater. 186 , 1031–1045 (2018)..
Kim, B. & Cho, S. Image‐based concrete crack assessment using mask and region‐based convolutional neural network. Struct. Control Health Monit. 26 , e2381 (2019)..
González-Castro, V., Debayle, J. & Pinoli, J. C. Color adaptive neighborhood mathematical morphology and its application to pixel-level classification. Pattern Recognit. Lett. 47 , 50–62 (2014)..
Xu, Y. et al. Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images. Struct. Health Monit. 18 , 653–674 (2019)..
Dong, Y. N. et al. Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification. IEEE Trans. Image Process. 31 , 1559–1572 (2022)..
Dhaka, V. S. et al. A survey of deep convolutional neural networks applied for prediction of plant leaf diseases. Sensors 21 , 4749 (2021)..
Zordan, M. et al. Cellular image classification workflow for real-time image based sort decisions. Proceedings of SPIE 11964, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XX. San Francisco: SPIE, 119640 F. (2022)
Glowacz, A. Ventilation diagnosis of angle grinder using thermal imaging. Sensors 21 , 2853 (2021)..
Tao, C. et al. Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Geosci. Remote Sens. Lett. 12 , 2438–2442 (2015)..
Fang, L. Y. et al. Classifi cation of hyperspectral images by exploiting spectral–spatial information of superpixel via multiple kernels. IEEE Trans. Geosci. Remote Sens. 53 , 6663–6674 (2015)..
Yu, J. et al. High-order distance-based multiview stochastic learning in image classification. IEEE Trans. Cybern. 44 , 2431–2442 (2014)..
Tabor, J. J. et al. A synthetic genetic edge detection program. Cell 137 , 1272–1281 (2009)..
He, J. Z. et al. BDCN: Bi-directional cascade network for perceptual edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 44 , 100–113 (2022)..
Yi, F. L. et al. Automatic extraction of cell nuclei from H & E-stained histopathological images. J. Med. Imaging 4 , 027502 (2017)..
Boukari, F. & Makrogiannis, S. Joint level-set and spatio-temporal motion detection for cell segmentation. BMC Med. Genomics 9 , 49 (2016)..
Hameed, K. A. S., Banumathi, A. & Ulaganathan, G. Performance evaluation of maximal separation techniques in immunohistochemical scoring of tissue images. Micron 79 , 29–35 (2015)..
Gençtav, A., Aksoy, S. & Önder, S. Unsupervised segmentation and classification of cervical cell images. Pattern Recognit. 45 , 4151–4168 (2012)..
Azzopardi, G. et al. Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 19 , 46–57 (2015)..
Chen, X., Sun, L. G. & Zhao, Y. NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix completion. Brief. Bioinforma. 22 , 485–496 (2021)..
Wang, Y. et al. A microfluidic robot for rare cell sorting based on machine vision identification and multi-step sorting strategy. Talanta 226 , 122136 (2021)..
McCoy, J. P. Jr. et al. Sorting minor subpopulations of cells: use of fluorescence as the triggering signal. Cytometry 12 , 268–274 (1991)..
Cho, S. H. et al. Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (μFACS). Lab a Chip 10 , 1567–1573 (2010)..
Ren, L. Q. et al. A high-throughput acoustic cell sorter. Lab a Chip 15 , 3870–3879 (2015)..
Sukhia, K. N. et al. Overlapping white blood cells detection based on watershed transform and circle fitting. Radioengineering 26 , 1177–1181 (2017)..
Qu, Y. D. et al. A fast subpixel edge detection method using Sobel – Zernike moments operator. Image Vis. Comput. 23 , 11–17 (2005)..
Sharifrazi, D. et al. Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images. Biomed. Signal Process. Control 68 , 102622 (2021)..
Chan, Y. K. et al. Leukocyte nucleus segmentation and nucleus lobe counting. BMC Bioinforma. 11 , 558 (2010)..
Mehrotra, R., Namuduri, K. R. & Ranganathan, N. Gabor filter-based edge detection. Pattern Recognit. 25 , 1479–1494 (1992)..
Bergmeir, C., Silvente, M. G. & Benítez, J. M. Segmentation of ce rvical cell nuclei in high-resolution microscopic images: a new algorithm and a web-based software framework. Computer Methods Prog. Biomedicine 107 , 497–512 (2012)..
Bousselham, A. et al. Towards reinforced brain tumor segmentation on MRI images based on temperature changes on pathologic area. Int. J. Biomed. Imaging 2019 , 1758948 (2019)..
Amin, J. et al. An integrated design based on dual thresholding and features optimization for white blood cells detection. IEEE Access 9 , 151421–151433 (2021)..
Ata, M. M. et al. Centroid tracking and velocity measurement of white blood cell in video. Health Inf. Sci. Syst. 6 , 20 (2018)..
Sun, Y. & Nelson, B. J. Biological cell injection using an autonomous microrobotic system. Int. J. Robot. Res. 21 , 861–868 (2002)..
Tang, C. et al. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small cell lung cancer patient outcomes. Int. J. Radiat. Oncol. *Biol. *Phys. 89 , 1084–1091 (2014)..
Orlhac, F. et al. Tumor texture analysis in 18 F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J. Nucl. Med. 55 , 414–422 (2014)..
Han, E. C. et al. Mass spectrometry-based plasma peptide profiling of acute exacerbation in HBeAg-positive chronic hepatitis B. Clin. Chim. Acta 412 , 2174–2182 (2011)..
Krishna, T. H. & Rajabhushnam, C. Detection of mammographic cancer using support vector machine and deep neural network. J. Mech. Contin. Math. Sci. 14 , 156–167 (2019)..
Yang, J. Y. et al. A hybrid machine learning-based method for classifying the Cushing's Syndrome with comorbid adrenocortical lesions. BMC Genomics 9 , S23 (2008)..
Gu, Y. et al. Machine learning based real‐time image‐guided cell sorting and classification. Cytom. Part A 95 , 499–509 (2019)..
Davidovic, L. M. et al. Gray-level co-occurrence matrix analysis for the detection ofdiscrete, ethanol-induced, structural changes in cell nuclei: an artificial intelligence approach. Microsc. Microanalysis 28 , 265–271 (2022)..
Li, Y. et al. Machine learning-based approaches for identifying human blood cells harboring CRISPR-mediated fetal chromatin domain ablations. Sci. Rep. 12 , 1481 (2022)..
Robitaille, M. C. et al. Self-supervised machine learning for live cell imagery segmentation. Commun. Biol. 5 , 1162 (2022)..
Zhang, H. et al. Molecular property prediction with photonic chip‐based machine learning. Laser Photonics Rev. 17 , 2200698 (2023)..
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521 , 436–444 (2015)..
Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 , 115–118 (2017)..
Khan, S. et al. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit. Lett. 125 , 1–6 (2019)..
Hosny, A. et al. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med. 15 , e1002711 (2018)..
Zhou, Z. W. et al. UNet + +: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39 , 1856–1867 (2020)..
Tang, R. et al. Low-latency label-free image-activated cell sorting using fast deep learning and AI inferencing. Biosens. Bioelectron. 220 , 114865 (2023)..
Nitta, N. et al. Intelligent image-activated cell sorting. Cell 175 , 266–276.E13 (2018)..
Araújo, F. H. et al. Deep learning for cell image segmentation and ranking. Computerized Med. Imaging Graph. 72 , 13–21 (2019)..
Stumpf, P. S. et al. Transfer learning efficiently maps bone marrow cell types from mouse to human using single-cell RNA sequencing. Commun. Biol. 3 , 736 (2020)..
Mieth, B. et al. Using transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data. Sci. Rep. 9 , 20353 (2019)..
He, K. M. et al. Deep residual learning for image recognition. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 770-778. 2016).
Zhang, H.&Ding, H. H. Prototypical matching and open set rejection for zero-shot semantic segmentation. Proceedings of IEEE/CVF International Conference on Computer Vision. Montreal, QC, Canada: IEEE, 6974-6983. 2021).
Togacar, M., Ergen, B. & Sertkaya, M. E. Subclass separation of white blood cell images using convolutional neural network models. Elektronika ir. Elektrotechnika 25 , 63–68 (2019)..
Jeon, H. J. et al. Automated cell-type classification combining dilated convolutional neural networks with label-free acoustic sensing. Sci. Rep. 12 , 19873 (2022)..
Cheuque, C. et al. An efficient multi-level convolutional neural network approach for white blood cells classification. Diagnostics 12 , 248 (2022)..
Gupta, R. K. et al. Label-free optical hemogram of granulocytes enhanced by artificial neural networks. Opt. Express 27 , 13706–13720 (2019)..
Toğaçar, M., Ergen, B. & Cömert, Z. Detection of lung cancer on chest CT images using minimum redundancy maximum relevance feature selection method with convolutional neural networks. Biocybern. Biomed. Eng. 40 , 23–39 (2020)..
Go, T., Byeon, H. & Lee, S. J. Label-free sensor for automatic identification of erythrocytes using digital in-line holographic microscopy and machine learning. Biosens. Bioelectron. 103 , 12–18 (2018)..
Shen, H. B., Yang, J. & Chou, K. C. Fuzzy KNN for predicting membrane protein types from pseudo-amino acid composition. J. Theor. Biol. 240 , 9–13 (2006)..
Brégeon, F. et al. MALDI-ToF mass spectrometry for the rapid diagnosis of cancerous lung nodules. PLoS One 9 , e97511 (2014)..
Hollandi, R. Applications of deep learning in single-cell analysis. PhD thesis, University of Szeged, Szeged, 2021).
Mircean, C. et al. Quantization and similarity measure selection for discrimination of lymphoma subtypes under k-nearest neighbor classification. Proceedings of Microarrays and Combinatorial Techniques: Design, Fabrication, and Analysis II. San Jose, CA, United States: SPIE, 6-17. 2004).
Hussain, M. et al. Rapid detection of Pseudomonas aeruginosa based on lab-on-a-chip platform using immunomagnetic separation, light scattering, and machine learning. Analytica Chim. Acta 1189 , 339223 (2022)..
Silva, R. R. V. et al. Radial feature descriptors for cell classification and recommendation. J. Vis. Commun. Image Representation 62 , 105–116 (2019)..
Ai, H. GSEA–SDBE: a gene selection method for breast cancer classification based on GSEA and analyzing differences in performance metrics. PLoS One 17 , e0263171 (2022)..
Becht, E. et al. Reverse-engineering flow-cytometry gating strategies for phenotypic labelling and high-performance cell sorting. Bioinformatics 35 , 301–308 (2019)..
Maguire, A. et al. Competitive evaluation of data mining algorithms for use in classification of leukocyte subtypes with Raman microspectroscopy. Analyst 140 , 2473–2481 (2015)..
Andreoletti, G. et al. Transcriptomic analysis of immune cells in a multi-ethnic cohort of systemic lupus erythematosus patients identifies ethnicity- and disease-specific expression signatures. Commun. Biol. 4 , 488 (2021)..
Kobayashi, S. et al. Integrated bulk and single-cell RNA-sequencing identified disease-relevant monocytes and a gene network module underlying systemic sclerosis. J. Autoimmun. 116 , 102547 (2021)..
Rahman, M. S. et al. isGPT: an optimized model to identify sub-Golgi protein types using SVM and Random Forest based feature selection. Artif. Intell. Med. 84 , 90–100 (2018)..
Breitbach, M. E. et al. Population‐specific patterns of epigenetic defects in the B cell lineage in patients with systemic lupus erythematosus. Arthritis Rheumatol. 72 , 282–291 (2020)..
Mualla, F. et al. Using the low-pass monogenic signal framework for cell/background classification on multiple cell lines in bright-field microscope images. Int. J. Computer Assist. Radiol. Surg. 9 , 379–386 (2014)..
Kim, S. et al. A data-driven transcriptional taxonomy of adipogenic chemicals to identify white and brite adipogens. Environ. Health Perspect. 129 , 077006 (2021)..
Rodrigo-Muñoz, J. M. et al. Asthma diagnosis using integrated analysis of eosinophil mic roRNAs. Allergy 74 , 507–517 (2019)..
Zafar, M. R. & Khan, N. M. DLIME: a deterministic local interpretable model-agnostic explanations approach for computer-aided diagnosis systems. Print at https://arxiv.org/abs/1906.10263 https://arxiv.org/abs/1906.10263 (2019).
Nohara, Y. et al. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Computer Methods Prog. Biomedicine 214 , 106584 (2022)..
Toseef, M. et al. Deep transfer learning for clinical decision-making based on high-throughput data: comprehensive survey with benchmark results. Brief. Bioinforma. 24 , bbad254 (2023)..
Kononenko, I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif. Intell. Med. 23 , 89–109 (2001)..
Atlamazoglou, V. et al. Microscopical examination of the localisation patterns of two novel rhodamine derivatives in normal and neoplastic colonic mucosa. Lasers Med. Sci. 16 , 253–259 (2001)..
Kilgore, J. A., Dolman, N. J. & Davidson, M. W. A review of reagents for fluorescence microscopy of cellular compartments and structures, Part Ⅲ: reagents for actin, tubulin, cellular membranes, and whole cell and cytoplasm. Curr. Protoc. Cytom. 67 , 12.32.1–12.32.17 (2014)..
Gref, R. et al. Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials 24 , 4529–4537 (2003)..
Bensley, J. G. et al. Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. Sci. Rep. 6 , 23756 (2016)..
Zhang, L. J. et al. Wheat germ agglutinin–conjugated fluorescent pH sensors for visualizing proton fluxes. J. Gen. Physiol. 152 , e201912498 (2020)..
Yang, K. W. et al. Wheat germ agglutinin modified liposomes for the photodynamic inactivation of bacteria. Photochem. Photobiol. 88 , 548–556 (2012)..
Chaudhari, R. D. et al. Effect of bud scars on the mechanical properties of Saccharomyces cerevisiae cell walls. Chem. Eng. Sci. 84 , 188–196 (2012)..
Campbell, K. P. & Kahl, S. D. Association of dystrophin and an integral membrane glycoprotein. Nature 338 , 259–262 (1989)..
Turdi, S. et al. Deficiency in AMP-activated protein kinase exaggerates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J. Mol. Cell. Cardiol. 50 , 712–722 (2011)..
Pajk, S. et al. New coumarin- and phenoxazine-based fluorescent probes for live-cell STED nanoscopy. Eur. Biophys. J. 48 , 485–490 (2019)..
Tillberg, P. W. et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34 , 987–992 (2016)..
Liu, C. et al. Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers. Nat. Biomed. Eng. 3 , 183–193 (2019)..
Guo, K. Y. et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat. Biomed. Eng. 5 , 666–677 (2021)..
Moreno, V., Smith, E. A . & Piña-Oviedo, S. Fluorescent immunohistochemistry. Methods Mol. Biol. 2422 , 131–146 (2022)..
Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8 , 870–891 (2013)..
Davis, C. H. O. et al. Transcellular degradation of axonal mitochondria. Proc. Natl Acad. Sci. USA 111 , 9633–9638 (2014)..
Fan, J. L. et al. Fluorescence imaging lysosomal changes during cell division and apoptosis observed using Nile Blue based near-infrared emission. Chem. Commun. 50 , 882–884 (2014)..
Andersen, J. S. et al. Nucleolar proteome dynamics. Nature 433 , 77–83 (2005)..
Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Developmental Cell 32 , 678–692 (2015)..
Zhang, S. L. et al. Lighting up fluoride ions in cellular mitochondria using a highly selective and sensitive fluorescent probe. Chem. Commun. 50 , 14021–14024 ( 2014)..
Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546 , 162–167 (2017)..
Franz, S. et al. After shrinkage apoptotic cells expose internal membrane-derived epitopes on their plasma membranes. Cell Death Differ. 14 , 733–742 (2007)..
Zhang, H. et al. Fluorene-derived two-photon fluorescent probes for specific and simultaneous bioimaging of endoplasmic reticulum and lysosomes: group-effect and localization. J. Mater. Chem. B 1 , 5450–5455 (2013)..
Adhikari, S. et al. Single-molecule localization microscopy and tracking with red-shifted states of conventional BODIPY conjugates in living cells. Nat. Commun. 10 , 3400 (2019)..
Adelakun, T. A. et al. A new highly oxygenated abietane diterpenoid and a new lysosome generating phorbol ester from the roots of Euphorbia fischeriana Steud. Nat. Prod. Res. 34 , 3027–3035 (2020)..
Xu, G. Y. et al. Fundc1 is necessary for proper body axis formation during embryogenesis in zebrafish. Sci. Rep. 9 , 18910 (2019)..
Soares,A. S. et al. Combination of Cl-IB-MECA with paclitaxel is a highly effective cytotoxic therapy causing mTOR-dependent autophagy and mitotic catastrophe on human melanoma cells. J. Cancer Res. Clin. Oncol. 140 , 921–935 (2014)..
Kilgore, J. A. & Davidson, M. W. A review of reagents for fluorescence microscopy of cellular compartments and structures, part Ⅰ: BacMam labeling and reagents for vesicular structures. Curr. Protoc. Cytom. 12 , 12.30.1–12.30.27 (2013)..
Kilgore, J. A. & Dolman, N. J. A review of reagents for fluorescence microscopy of cellular compartments and structures, part Ⅱ: reagents for non-vesicular organelles. Curr. Protoc. 3 , e752 (2023)..
Nadelmann, E. R. et al. Isolation of nuclei from mammalian cells and tissues for single‐nucleus molecular profiling. Curr. Protoc. 1 , e132 (2021)..
Hough, K. P. et al. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Redox Biol. 18 , 54–64 (2018)..
Sun, J. C. et al. Adiponectin receptor agonist AdipoRon blocks skin inflamm‐ageing by regulating mitochondrial dynamics. Cell Prolif. 54 , e13155 (2021)..
Chazotte, B. Labeling mitochondria with MitoTracker dyes. Cold Spring Harb. Protoc. 2011 , 990–992 (2011)..
Miao, Z. R. et al. Exposure to imidacloprid induce oxidative stress, mitochondrial dysfunction, inflammation, apoptosis and mitophagy via NF-kappaB/JNK pathway in grass carp hepatocytes. Fish. Shellfish Immunol. 120 , 674–685 (2022)..
Hou, Y. et al. Salidroside intensifies mitochondrial function of CoCl 2 -damaged HT22 cells by stimulating PI3K-AKT-MAPK signaling pathway. Phytomedicine 109 , 154568 (2023)..
Kobuke, K. et al. Calneuron 1 increased Ca 2+ in the endoplasmic reticulum and aldosterone production in aldosterone-producing adenoma. Hypertension 71 , 125–133 (2018)..
Cole, L. et al. ER‐Tracker dye and BODIPY‐brefeldin A differentiate the endoplasmic reticulum and Golgi bodies from the tubular‐vacuole system in living hyphae of Pisolithus tinctorius . J. Microsc. 197 , 239–249 (2000)..
Wu, L. L. et al. ESIPT-based ratiometric fluorescence probe for the intracellular imaging of peroxynitrite. Chem. Commun. 54 , 9953–9956 (2018)..
Wang, M. M. et al. Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 23 , 83–87 (2005)..
Landenberger, B. et al. Microfluidic sorting of arbitrary cells with dynamic optical tweezers. Lab a Chip 12 , 3177–3183 (2012)..
Applegate Jr, R. W. et al. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab a Chip 6 , 422–426 (2006)..
Gao, J. H. & Xu, B. Applications of nanomaterials inside cells. Nano Today 4 , 37–51 (2009)..
Dong, W. et al. Labeling of BSA and imaging of mouse T‐lymphocyte as well as mouse spleen tissue by L ‐glutathione capped CdTe quantum dots. Luminescence 25 , 55–60 (2010)..
Lim, Y. T. et al. Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical ima ging of immunotherapeutic cells-based cancer therapy. Nanotechnology 20 , 475102 (2009)..
Ravindran, S. et al. Quantum dots as bio-labels for the localization of a small plant adhesion protein. Nanotechnology 16 , 1 (2005)..
Taghizadeh, A. et al. A library of ab initio Raman spectra for automated identification of 2D materials. Nat. Commun. 11 , 3011 (2020)..
Zhao, J. H. et al. Using Raman spectroscopy to detect and diagnose skin cancer in vivo. Dermatologic Clin. 35 , 495–504 (2017)..
Nogueira, G. V. et al. Raman spectroscopy study of atherosclerosis in human carotid artery. J. Biomed. Opt. 10 , 031117 (2005)..
Brennan III, J. F. et al. Determination of human coronary artery composition by Raman spectroscopy. Circulation 96 , 99–105 (1997)..
Fontané, X. et al. In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu 2 ZnSnS 4 layers for solar cell applications. Appl. Phys. Lett. 98 , 181905 (2011)..
Ragusa, A. et al. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. Polymers 14 , 2700 (2022)..
Vandenabeele, P., Edwards, H. G. M. & Moens, L. A decade of Raman spectroscopy in art and archaeology. Chem. Rev. 107 , 675–686 (2007)..
Kneipp, K. et al. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 99 , 2957–2976 (1999)..
Zhan, C. et al. Plasmon-mediated chemical reactions on nanostructures unveiled by surface-enhanced Raman spectroscopy. Acc. Chem. Res. 52 , 2784–2792 (2019)..
Thurn, R. & Kiefer, W. Raman-microsampling technique applying optical levitation by radiation pressure. Appl. Spectrosc. 38 , 78–83 (1984)..
Fang, T. et al. Nondestructive identification and accurate isolation of single cells through a chip with Raman optical tweezers. Anal. Chem. 91 , 9932–9939 (2019)..
Parlatan, U., Başa r, G. & Başar, G. Sorting of micron-sized particles using holographic optical Raman tweezers in aqueous medium. J. Mod. Opt. 66 , 228–234 (2019)..
Xu, T. et al. Phenome–genome profiling of single bacterial cell by Raman‐activated gravity‐driven encapsulation and sequencing. Small 16 , 2001172 (2020)..
Maragó, O. M. et al. Brownian motion of graphene. ACS Nano 4 , 7515–7523 (2010)..
Hu, J. Q. et al. RSPSSL: a novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization. Light Sci. Appl. 13 , 52 (2024)..
Ho, C. S. et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 10 , 4927 (2019)..
Lu, W. L. et al. Combination of an artificial intelligence approach and laser tweezers Raman spectroscopy for microbial identification. Anal. Chem. 92 , 6288–6296 (2020)..
Lee, K. S. et al. Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with s pecific functions. Nat. Protoc. 16 , 634–676 (2021)..
Shuyun, W. et al. Laser tweezer Raman spectroscopy combined with deep neural networks for identification of liver cancer cells. Talanta 264 , 124753 (2023)..
Liu, B. et al. Laser tweezers Raman spectroscopy combined with deep learning to classify marine bacteria. Talanta 244 , 123383 (2022)..
Kemp, B. A. Resolution of the Abraham-Minkowski debate: implications for the electromagnetic wave theory of light in matter. J. Appl. Phys. 109 , 111101 (2011)..
Mansuripur, M. Resolution of the Abraham–Minkowski controversy. Opt. Commun. 283 , 1997–2005 (2010)..
Qiu, C. W. et al. Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams. Light Sci. Appl. 4 , e278 (2015)..
Kajorndejnukul, V. et al. Linear momentum increase and negative optical forces at dielectric interface. Nat. Photonics 7 , 787–790 (2013)..
Milonni, P. W. & Boyd, R. W. Momentum of light in a dielectric medium. Adv. Opt. Photonics 2 , 519–553 (2010)..
Wu, W. et al. Precise sorting of gold nanoparticles in a flowing system. ACS Photonics 3 , 2497–2504 (2016)..
Zhao, H. T. et al. Continuous optical sorting of nanoscale biomolecules in integrated microfluidic-nanophotonic chips. Sens. Actuators B: Chem. 331 , 129428 (2021)..
Yang, S. & Ndukaife, J. C. Optofluidic transport and assembly of nanoparticles using an all-dielectric quasi-BIC metasurface. Light Sci. Appl. 12 , 188 (2023)..
Bishop, R. E. D. & Hassan, A. Y. The lift and drag forces on a circular cylinder in a flowing fluid. Proc. R. Soc. A: Math., Phys. Eng. Sci. 277 , 32–50 (1964)..
Ilic, O. & Atwater, H. A. Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects. Nat. Photonics 13 , 289–295 (2019)..
Zhu, X. C. et al. Plasmofluidic microlenses for label-free optical sorting of exosomes. Sci. Rep. 9 , 8593 (2019)..
Ashkin, A. & Dziedzic, J. M. Optical trapping and manipulation of viruses and bacteria. Science 235 , 1517–1520 (1987)..
Pang, Y. J. et al. Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution. Nat. Nanotechnol. 9 , 624–630 (2014)..
Yang, A. H. J. et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457 , 71–75 (2009)..
Li, T. C. et al. Measurement of the instantaneous velocity of a Brownian particle. Science 328 , 1673–1675 (2010)..
Hansen, P. M. et al. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 5 , 1937–1942 (2005)..
Makihara, J., Kaneta, T. & Imasaka, T. Optical chromatography: size determination by eluting particles. Talanta 48 , 551–557 (1999)..
Terray, A., Arnold, J. & Hart, S. J. Enhanced optical chromatographyin a PDMS microfluidic system. Opt. Express 13 , 10406–10415 (2005)..
Ashok, P. C. et al. Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation. Opt. Express 18 , 6396–6407 (2010)..
Gholizadeh, E., Jafari, B. & Golmohammadi, S. Graphene-based optofluidic tweezers for refractive-index and size-based nanoparticle sorting, manipulation, and detection. Sci. Rep. 13 , 1975 (2023)..
Paul, P. & Liu, P. Q. Dynamically reconfigurable bipolar optical gradient force induced by mid-infrared graphene plasmonic tweezers for sorting dispersive nanoscale objects. Adv. Optical Mater. 10 , 2101744 (2022)..
Kawaguchi, H. et al. Generation of hexagonal close-packed ring-shaped structures using an optical vortex. Nanophotonics 11 , 855–864 (2022)..
Bobkova, V. et al. Optical grinder: sorting of trapped particles by orbital angularmomentum. Opt. Express 29 , 12967–12975 (2021)..
Xu, X. H . et al. Kerker-type intensity-gradient force of light. Laser Photonics Rev. 14 , 1900265 (2020)..
Tai, Y. P. et al. Particle aggregation/disaggregation and sorting using woven spiral beams. Appl. Phys. Lett. 123 , 191109 (2023)..
Li, X. F. et al. Massive parallel sorting of particles using unwound polygonal vortex beams. Front. Phys. 10 , 877804 (2022)..
Danesh, M. et al. Monolayer conveyor for stably trapping and transporting sub-1 nm particles. Laser Photonics Rev. 14 , 2000030 (2020)..
Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers. Opt. Commun. 207 , 169–175 (2002)..
Dufresne, E. R. et al. Computer-generated holographic optical tweezer arrays. Rev. Sci. Instrum. 72 , 1810–1816 (2001)..
Padgett, M. & Di Leonardo, R. Holographic optical tweezers and their relevance to lab on chip devices. Lab a Chip 11 , 1196–1205 (2011)..
Liesener, J. et al. Multi-functional optical tweezers using computer-generated holograms. Opt. Commun. 185 , 77–82 (2000)..
Korda, P. T., Taylor, M. B. & Grier, D. G. Kinetically locked-in colloidal transport in an array of optical tweezers. Phys. Rev. Lett. 89 , 128301 (2002)..
Curtis, J. E. & Grier, D. G. Structure of optical vortices. Phys. Rev. Lett. 90 , 133901 (2003)..
MacDonald, M. P., Spalding, G. C. & Dholakia, K. Microfluidic sorting in an optical lattice. Nature 426 , 421–424 (2003)..
Ladavac, K., Kasza, K. & Grier, D. G. Sorting mesoscopic objects with periodic potential landscapes: optical fractionation. Phys. Rev. E 70 , 010901 (2004)..
Chapin, S. C., Germain, V. & Dufresne, E. R. Automated trapping, assembly, and sorting with holographic optical tweezers. Opt. Express 14 , 13095–13100 (2006)..
Ahlawat, S. et al. Optical sorting in holographic trap arrays by tuning the inter-trap separation. J. Opt. 14 , 12550 1 (2012)..
Xiao, K. & Grier, D. G. Multidimensional optical fractionation of colloidal particles with holographic verification. Phys. Rev. Lett. 104 , 028302 (2010)..
Wang, C. W. et al. Femtosecond mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects. ACS Nano 13 , 4667–4676 (2019)..
Palima, D. & Daria, V. R. Effect of spurious diffraction orders in arbitrary multifoci patterns produced via phase-only holograms. Appl. Opt. 45 , 6689–6693 (2006)..
Zhang, H. et al. Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection. Appl. Opt. 48 , 5834–5841 (2009)..
Yun, X. et al. Zero-order free holographic optical tweezers. Opt. Express 31 , 19613–19621 (2023)..
Xie, X. et al. Single-particle trapping and dynamic manipulation with holographic optical surface-wave tweezers. Photonics Res. 10 , 166–173 (2022)..
Jesacher, A. et al. Holographic optical tweezers for object manipulations at an air-liquid surface. Opt. Express 14 , 6342–6352 (2006)..
Collard, L., Sinjab, F. & Notingher, I. Raman spectroscopy study of curvature-mediated lipid packing and sorting in single lipid vesicles. Biophysical J. 117 , 1589–1598 (2019)..
Sinjab, F. et al. Holographic optical trapping Raman micro-spectroscopy for non-invasive measurement and manipulation of live cells. Opt. Express 26 , 25211–25225 (2018)..
O'Neil, A. T. et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88 , 053601 (2002)..
Nan, F. & Yan, Z. J. Synergy of intensity, phase, and polarization enables versatile optical nanomanipulation. Nano Lett. 20 , 2778–2783 (2020)..
Zhou, Q. et al. Microparticle sorting with a virtual optical chip. Rev. Sci. Instrum. 92 , 053201 (2021)..
Shen, Z. & Huang, X. Y. Optical pulling force in non-paraxial bes sel tractor beam generated with polarization-insensitive metasurface. Chin. Phys. Lett. 40 , 053701 (2023)..
Kostina, N. et al. Optical pulling and pushing forces via Bloch surface waves. Opt. Lett. 47 , 4592–4595 (2022)..
Li, H. et al. Momentum-topology-induced optical pulling force. Phys. Rev. Lett. 124 , 143901 (2020)..
Das, S. C. et al. An optical cluster: near-field optical sorting and separation of plasmonic, dielectric, and chiral nanoparticle. Ann. der Phys. 533 , 2100299 (2021)..
Fernandes, D. E. & Silveirinha, M. G. Single-beam optical conveyor belt for chiral particles. Phys. Rev. Appl. 6 , 014016 (2016)..
Ali, R. et al. Enantioselection and chiral sorting of single microspheres using optical pulling forces. Opt. Lett. 46 , 1640–1643 (2021)..
Yu, X. N. et al. Anomalous lateral optical force as a manifestation of the optical transverse spin. Laser Photonics Rev. 17 , 2300212 (2023)..
Magallanes, H. & Brasselet, E. Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques. Nat. Photonics 12 , 461–464 (2018)..
Andrén, D. et al. Microscopic metavehicles powered and steered by embedded optical metasurfaces. Nat. Nanotechnol. 16 , 970–974 (2021)..
Chen, H. J. et al. Lateral optical force due to the breaking of electric-magnetic symmetry. Phys. Rev. Lett. 125 , 073901 (2020)..
Nan, F. et al. Creating tunable lateral optical forces through multipolar interplay in single nanowires. Nat. Commun. 14 , 6361 (2023)..
Hayat, A., Mueller, J. P. B. & Capasso, F. Lateral chirality-sorting optical forces. Proc. Natl Acad. Sci. USA 112 , 13190–13194 (2015)..
Chen, H. J. et al. Chirality sorting using two-wave-interference–induced lateral optical force. Phys. Rev. A 93 , 053833 (2016)..
Zhang, T. H. et al. All-optical chirality-sensitive sorting via reversible lateral forces in i nterference fields. ACS Nano 11 , 4292–4300 (2017)..
Li, M. M. et al. Optical sorting of small chiral particles by tightly focused vector beams. Phys. Rev. A 99 , 033825 (2019)..
Zhang, Q., Li, J. Q. & Liu, X. G. Optical lateral forces and torques induced by chiral surface-plasmon-polaritons and their potential applications in recognition and separation of chiral enantiomers. Phys. Chem. Chem. Phys. 21 , 1308–1314 (2019)..
Alizadeh, M. H. & Reinhard, B. M. Transverse chiral optical forces by chiral surface plasmon polaritons. ACS Photonics 2 , 1780–1788 (2015)..
Safkat, K., Rahim, M. & Mahdy, M. R. C. Optical sorting of a plasmonic or dielectric or chiral mie object using a single metasurface. Ann. der Phys. 534 , 2100402 (2022)..
Zhao, Y. et al. Nanoscopic control and quantification of enantioselective optical forces. Nat. Nanotechnol. 12 , 1055–1059 (2017)..
Zhao, Y., Saleh, A. A. E. & Dionne, J. A. Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers. ACS Photonics 3 , 304–309 (2016)..
Kravets, N., Aleksanyan, A. & Brasselet, E. Chiral optical stern-gerlach newtonian experiment. Phys. Rev. Lett. 122 , 024301 (2019)..
Shi, Y. Z. et al. Optical potential-well array for high-selectivity, massive trapping and sorting at nanoscale. Nano Lett. 20 , 5193–5200 (2020)..
Shi, Y. Z. et al. Optofluidic microengine in a dynamic flow environment via self-induced back-action. ACS Photonics 7 , 1500–1507 (2020)..
Chen, J. J. et al. CRISPR-powered optothermal nanotweezers: diverse bio-nanoparticle manipulation and single nucleotide identification. Light Sci. Appl. 12 , 273 (2023)..
Bouloumis, T. D., Kotsifaki, D. G. & Nic Chormaic, S. Enabling self-induced back-action trapping of gold nanoparticles in metamaterial plasmonic tweezers. Nano Lett. 23 , 4723–4731 (2023)..
Zhu, T. T. et al. Self-induced backaction optical pulling force. Phys. Rev. Lett. 120 , 123901 (2018)..
Juan, M. L. et al. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys. 5 , 915–919 (2009)..
Neumeier, L., Quidant, R. & Chang, D. E. Self-induced back-action optical trapping in nanophotonic systems. N. J. Phys. 17 , 123008 (2015)..
Jafari, B. et al. Active graphene plasmonic tweezers: size based nanoparticle trapping and sorting. IEEE Trans. Nanotechnol. 21 , 219–226 (2022)..
Shi, Y. Z. et al. On-chip optical detection of viruses: a review. Adv. Photonics Res. 2 , 2000150 (2021)..
Shi, Y. Z. et al. Trapping and detection of single viruses in an optofluidic chip. ACS Sens. 6 , 3445–3450 (2021)..
Shi, Y. Z. et al. Nanophotonic array-induced dynamic behavior for label-free shape-selective bacteria sieving. ACS Nano 13 , 12070–12080 (2019)..
Cao, T., Wang, Z. M. & Mao, L. B. Reconfigurable label-free shape-sieving of submicron particles in paired chalcogenide waveguides. Nanoscale 14 , 2465–2474 (2022)..
Jákl, P. et al. Optical sorting of nonspherical and living microobjects in moving interference structures. Opt. Express 22 , 29746–29760 (2014)..
Chen, J. et al. Trapping and sorting micro-nano particles in a dynamic optical sieve. IEEE Photonics J. 14 , 2214604 (2022)..
Hansen, P. et al. Nano-optical conveyor belt, part Ⅰ: theory. Nano Lett. 14 , 2965–2970 (2014)..
Zheng, Y. X. et al. Nano-optical conveyor belt, part Ⅱ: demonstration of handoff between near-field optical traps. Nano Lett. 14 , 2971–2976 (2014)..
Cižmár, T. et al. Optical conveyor belt for delivery of submicron objects. Appl. Phys. Lett. 86 , 174101 (2005)..
Cižmár, T. et al. Optical sorting and detection of submicrometer objects in a motional standing wave. Phys. Rev. B 74 , 035105 (2006)..
Zhang, C. et al. Optical conveyor belt based on a plasmonic metasur face with polarization dependent hot spot arrays. Opt. Lett. 46 , 1522–1525 (2021)..
Xu, X. H. et al. Optomechanical wagon-wheel effects for bidirectional sorting of dielectric nanoparticles. Laser Photonics Rev. 15 , 2000546 (2021)..
Chen, Z. H., Li, J. G. & Zheng, Y. B. Heat-mediated optical manipulation. Chem. Rev. 122 , 3122–3179 (2022)..
Peterman, E. J. G., Gittes, F. & Schmidt, C. F. Laser-induced heating in optical traps. Biophysical J. 84 , 1308–1316 (2003)..
Kabtiyal, P. et al. Localized plasmonic heating for single-molecule DNA rupture measurements in optical tweezers. Nano Lett. 24 , 3097–3103 (2024)..
Heller, I. et al. Optical tweezers analysis of DNA–protein complexes. Chem. Rev. 114 , 3087–3119 (2014)..
Lin, L. H. et al. Optothermal manipulations of colloidal particles and living cells. Acc. Chem. Res. 51 , 1465–1474 (2018)..
Kollipara, P. S., Chen, Z. H. & Zheng, Y. B. Optical manipulation heats up: present and future of optothermal manipulation. ACS Nano 17 , 7051–7063 (2023)..
Liu, S. F., Lin, L. H. & Sun, H. B. Opto-thermophoretic manipulation. ACS Nano 15 , 5925–5943 (2021)..
Zhang, S. L. et al. Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation. Chem. Soc. Rev. 51 , 9203–9242 (2022)..
Ding, H. R. et al. Optothermal rotation of micro-/nano-objects. Chem. Commun. 59 , 2208–2221 (2023)..
Liu, Y. R. et al. Light-driven single-cell rotational adhesion frequency assay. eLight 2 , 13 (2022)..
Chen, J. J. et al. Highly-adaptable optothermal nanotweezers for trapping, sorting, and assembling across diverse nanoparticles. Adv. Mater. 36 , 2309143 (2024)..
Liu, Y. R. et al. Nanoradiator-mediated deterministic opto-thermoelectric manipulation. ACS Nano 12 , 10383–10392 (2018)..
Liu, Y. Y. & Poon, A. W. Flow-assisted single-beam optothermal manipulation of microparticles. Opt. Express 18 , 18483–18491 (2010)..
Ndukaife, J. C. et al. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat. Nanotechnol. 11 , 53–59 (2016)..
Kotnala, A., Kollipara, P. S. & Zheng, Y. B. Opto-thermoelectric speckle tweezers. Nanophotonics 9 , 927–933 (2020)..
Krishnan, A., Wu, S. H. & Povinelli, M. Tunable size selectivity and nanoparticle immobilization on a photonic crystal optical trap. Opt. Lett. 43 , 5399–5402 (2018)..
Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nat. Photonics 5 , 349–356 (2011)..
Zhang, Y. Q. et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci. Appl. 10 , 59 (2021)..
Crozier, K. B. Quo vadis, plasmonic optical tweezers? Light Sci. Appl. 8 , 35 (2019)..
Miao, J. S. et al. Surface plasmon-enhanced photodetection in few layer MoS 2 phototransistors with Au nanostructure arrays. Small 11 , 2392–2398 (2015)..
Righini, M. et al. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. 100 , 186804 (2008)..
Kotsifaki, D. G., Truong, V. G. & Chormaic, S. N. Fano-resonant, asymmetric, metamaterial-assisted tweezers for single nanoparticle trapping. Nano Lett. 20 , 3388–3395 (2020)..
Zhang, Y. et al. Polarization-dependent optical forces arising from fano interference. Adv. Phys. Res. 2 , 2200048 (2023)..
Chen, H. J. et al. Fano resonance-induced negative optical scattering force on plasmonic nanoparticles. ACS Nano 9 , 1926–1935 (2015)..
Qin, H.Y. et al. Exploiting extraordinary topological optical forces at bound states in the continuum. Sci. Adv. 8 , eade7556 (2022)..
Yang, S. et al. Nanoparticle trapping in a quasi-BIC system. ACS Photonics 8 , 1961–1971 (2021)..
Wang, J. Z. et al. Parallel trapping of multiple nanoparticles using a quasi-bound state in the continuum mode. J. Optical Soc. Am. B 39 , 2356–2361 (2022)..
Bulgakov, E. & Sadreev, A. Precise size sorting of nanoparticles by bound states in the continuum in a dual finite grating. Opt. Lett. 48 , 4705–4708 (2023)..
Kostyukov, A. S. et al. Size-selective optical trapping of nanoparticles with bound states in the continuum. Opt. Lasers Eng. 171 , 107797 (2023)..
Lin, S. Y. & Crozier, K. B. Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles. Lab a Chip 11 , 4047–4051 (2011)..
Suwanpayak, N. et al. Optical vortices generated by a PANDA ring resonator for drug trapping and delivery applications. Biomed. Opt. Express 2 , 159–168 (2011)..
Kalantarifard, F. et al. Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser. Nat. Commun. 10 , 2683 (2019)..
Yang, A. H. J. & Erickson, D. Optofluidic ring resonator switch for optical particle transport. Lab a Chip 10 , 769–774 (2010)..
Mandal, S., Serey, X. & Erickson, D. Nanomanipulation using silicon photonic crystal resonators. Nano Lett. 10 , 99–104 (2010)..
Grigorenko, A. N. et al. Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics 2 , 365–370 (2008)..
Kotnala, A. & Gordon, R. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer. Nano Lett. 14 , 853–856 (2014)..
Shi, Y. Z. et al. Superhybrid mode-enhanced optical torques on mie-resonant particles. Nano Lett. 22 , 1769–1777 (2022)..
Zograf, G. et al. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum. ACS Photonics 9 , 567–574 (2022)..
Basharin, A. A. et al. Dielectric metamaterials with toroidal dipolar response. Phys. Rev. X 5 , 011036 (2015)..
Kruk, S. & Kivshar, Y. Functional meta-optics and nanophotonics governed by Mie resonances. ACS Photonics 4 , 2638–2649 (2017)..
Ploschner, M. et al. Bidirectional optical sorting of gold nanoparticles. Nano Lett. 12 , 1923–1927 (2012)..
Deriy, I. et al. Bound states in the continuum in compact acoustic resonators. Phys. Rev. Lett. 128 , 084301 (2022)..
Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541 , 196–199 (2017)..
Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367 , 288–292 (2020)..
Li, S. Y. et al. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces. Phys. Rev. A 100 , 063803 (2019)..
Bulgakov, E. N. & Sadreev, A. F. Self-trapping of nanoparticles by bound states in the continuum. Phys. Rev. B 106 , 165430 (2022)..
Abbasi, M. M. et al. Tunable plasmonic force switch based on graphene nano-ring resonator for nanomanipulation. Opt. Express 27 , 26648–26660 (2019)..
Yu, E. S. et al. Precise capture and dynamic relocation of nanoparticulate biomolecules through dielectrophoretic enhancement by vertical nanogap architectures. Nat. Commun. 11 , 2804 (2020)..
Markovich, H. et al. Optical manipulation along an optical axis with a polarization sensitive meta-lens. Nano Lett. 18 , 5024–5029 (2018)..
Bao, F. L. et al. Inhomogeneity-induced casimir transport of nanoparticles. Phys. Rev. Lett. 121 , 130401 (2018)..
Liu, N. et al. Achiral nanoparticle trapping and chiral nanoparticle separating with quasi-BIC metasurface. Opt. Express 31 , 28912–28928 (2023)..
Lyu, S. et al. Double-sided plasmonic metasurface for simultaneous biomolecular separation an d SERS detection. Spectrochimica Acta Part A: Mol. Biomolecular Spectrosc. 285 , 121801 (2023)..
Kuo, H. Y. et al. Cubic-phase metasurface for three-dimensional optical manipulation. Nanomaterials 11 , 1730 (2021)..
Conteduca, D. et al. Multiplexed near-field optical trapping exploiting anapole states. ACS Nano 17 , 16695–16702 (2023)..
Shanei, M. M., Engay, E. & Käll, M. Light-driven transport of microparticles with phase-gradient metasurfaces. Opt. Lett. 47 , 6428–6431 (2022)..
Yin, S. Q. et al. Coherently tunable metalens tweezers for optofluidic particle routing. Opt. Express 28 , 38949–38959 (2020)..
Shen, Z. et al. Optical trapping and separation of metal nanoparticles by cylindrical metalenses with phase gradients. IEEE Photonics J. 12 , 4600810 (2020)..
Xu, F. et al. Optically levitated conveyor belt based on polarization-dependent metasurface lens arrays. Opt. Lett. 47 , 2194–2197 (2022)..
Luo, H. et al. 1 nm-resolution sorting of sub-10 nm nanoparticles using a dielectric metasurface with toroidal responses. Small Sci. 3 , 2300100 (2023)..
Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2 , e1501524 (2016)..
Sun, K. et al. Topological semimetal in a fermionic optical lattice. Nat. Phys. 8 , 67–70 (2012)..
Smirnova, D. et al. Nonlinear topological photonics. Appl. Phys. Rev. 7 , 021306 (2020)..
Yang, Y. H. et al. Realization of a three-dimensional photonic topological insulator. Nature 565 , 622–626 (2019)..
Shen, Y. J. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics 18 , 15–25 (2024)..
Peng, J. et al. Topological near fields generated by topological structures. Sci. Adv. 8 , eabq0910 (2022)..
Shen, Y. J., Martínez, E. C. & Rosales-Guzmán, C. Generation of optical skyrmions with tunable topological textures. ACS Photonics 9 , 296–303 (2022)..
Wang, M. S. et al. Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges. eLight 2 , 12 (2022)..
Zhu, T. F. et al. Topological optical differentiator. Nat. Commun. 12 , 680 (2021)..
Zhang, Y. H. et al. Realization of photonic p -orbital higher-order topological insulators. eLight 3 , 5 (2023)..
Liu, G. G. et al. TopologicalChern vectors in three-dimensional photonic crystals. Nature 609 , 925–930 (2022)..
Yin, S. X., Galiffi, E. & Alù, A. Floquet metamaterials. eLight 2 , 8 (2022)..
Barik, S. et al. A topological quantum optics interface. Science 359 , 666–668 (2018)..
Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photonics 5 , 343–348 (2011)..
Tang, X. et al. Achiral and chiral optical force within topological optical lattices generated with plasmonic metasurfaces and tunable incident beam. Phys. Rev. Appl. 19 , 054016 (2023)..
Song, Q. H. et al. Plasmonic topological metasurface by encircling an exceptional point. Science 373 , 1133–1137 (2021)..
Shi, B. J. et al. Multiparticle resonant optical sorting using a topological photonic structure. Photonics Res. 10 , 297–302 (2022)..
Lv, Y. L. et al. Sorting orbital angular momentum of photons through a multi-ring azimuthal-quadratic phase. Opt. Lett. 47 , 5032–5035 (2022)..
Wang, X. Q. et al. Collecting, transporting and sorting micro-particles via the optical slings generated by a liquid crystal q ( f )-plate. Opt. Express 31 , 5736–5746 (2023)..
Zhang, Q. et al. Bloch-type photonic skyrmions in optical chiral multilayers. Phys. Rev. Res. 3 , 023109 (2021)..
Du, L. P. et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15 , 650–654 (2019)..
Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361 , 993–996 (2018)..
Davis, T. J. et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368 , eaba6415 (2020)..
Donati, S. et al. Twist of generalized skyrmions and spin vortices in a polariton superfluid. Proc. Natl Acad. Sci. USA 113 , 14926–14931 (2016)..
Shi, Y. Z. et al. Inverse optical torques on dielectric nanoparticles in elliptically polarized light waves. Phys. Rev. Lett. 129 , 053902 (2022)..
Ozcelik, A. et al. Acoustic tweezers for the life sciences. Nat. Methods 15 , 1021–1028 (2018)..
Hettiarachchi, S. et al. Recent microfluidic advances in submicron to nanoparticle manipulation and separation. Lab a Chip 23 , 982–1010 (2023)..
Ding, X. Y. et al. Surface acoustic wave microfluidics. Lab a Chip 13 , 3626–3649 (2013)..
Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl Acad. Sci. USA 112 , 4970–4975 (2015)..
Leibacher, I., Reichert, P. & Dual, J. Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis. Lab a Chip 15 , 2896–2905 (2015)..
Yang, S. J. et al. Acoustic tweezers for high-throughput single-cell analysis. Nat. Protoc. 18 , 2441–2458 (2023)..
Thalhammer, G. et al. Combined acoustic and optical trapping. Biomed. Opt. Express 2 , 2859–2870 (2011)..
Hu, X. J. et al. Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip. Lab a Chip 18 , 3405–3412 (2018)..
Wu, M. C. Optoelectronic tweezers. Nat. Photonics 5 , 322–324 (2011)..
Zhang, S. L. et al. Reconfigurable multi-component micromachines driven by optoelectronic tweezers. Nat. Commun. 12 , 5349 (2021)..
Woerdemann, M. et al. Advanced optical trapping by complex beam shaping. Laser Photonics Rev. 7 , 839–854 (2013)..
Chiou, P. Y., Ohta, A. T. & Wu, M. C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 436 , 370–372 (2005)..
Gan, C. Y. et al. Optoelectronic tweezers micro-well system for highly efficient single-cell trapping, dynamic sorting, and retrieval. Small 20 , 2307329 (2024)..
Ota, S. et al. Lipid bilayer-integrated optoelectronic tweezers for nanoparticle manipulations. Nano Lett. 13 , 2766–2770 (2013)..
Lim, M. B. et al. Copper- and chloride-mediated synthesis and optoelectronic trapping of ultra-high aspect ratio palladium nanowires. J. Mater. Chem. A 6 , 5644–5651 (2018)..
Jamshidi, A. et al. NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles. Nano Lett. 9 , 2921–2925 (2009)..
Liu, L. L. et al. Three-dimensional measurement of the helicity-dependent forces on a mie particle. Phys. Rev. Lett. 120 , 223901 (2018)..
Huang, L. R. et al. Continuous particle separation through deterministic lateral displacement. Science 304 , 987–990 (2004)..
Wunsch, B. H. et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat. Nanotechnol. 11 , 936–940 (2016)..
Collins, D. J., Alan, T. & Neild, A. Particle separation using virtual deterministic lateral displacement (vDLD). Lab a Chip 14 , 1595–1603 (2014)..
Karabacak, N. M. et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 9 , 694–710 (2014)..
Ozkumur, E. et al. Inertial focusing for tumor antigen–dependent and –independent sorting of rare circu lating tumor cells. Sci. Transl. Med. 5 , 179ra47 (2013)..
Huang, R. X. et al. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat. Phys. 7 , 576–580 (2011)..
Mage, P. L. et al. Shape-based separation of synthetic microparticles. Nat. Mater. 18 , 82–89 (2019)..
Cheng, Z. et al. Microfluidic fluorescence-activated cell sorting (μFACS) chip with integrated piezoelectric actuators for low-cost mammalian cell enrichment. Microfluidics Nanofluidics 21 , 9 (2017)..
Tewari Kumar, P. et al. Digital microfluidics for single bacteria capture and selective retrieval using optical tweezers. Micromachines 11 , 308 (2020)..
Wang, X. Y. et al. Plasmonic manipulation of targeted metallic particles by polarization-sensitive metalens. ACS Photonics 5 , 2945–2950 (2018)..
Yang, W. H. et al. Advanced manufacturing of dielectric meta-devices. Photonics Insights 3 , R04 (2024)..
Ren, Y. T. et al. Plasmonic optical tweezers for particle manipulation: principles, methods, and applications. ACS Nano 15 , 6105–6128 (2021)..
Kotsifaki, D. G. & Chormaic, S. N. The role of temperature-induced effects generated by plasmonic nanostructures on particle delivery and manipulation: a review. Nanophotonics 11 , 2199–2218 (2022)..
Kotnala, A. et al. Overcoming diffusion-limited trapping in nanoaperture tweezers using opto-thermal-induced flow. Nano Lett. 20 , 768–779 (2020)..
Wang, K. et al. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun. 2 , 469 (2011)..
Lin, L. H. et al. Bubble-pen lithography. Nano Lett. 16 , 701–708 (2016)..
Zhou, Y. T., Dai, L. G. & Jiao, N. D. Review of bubble applications in microrobotics: propulsion, manipulation, and assembly. Micromachines 13 , 1068 (2022)..
Dai, L. G. et al. 2D to 3D manipulation and assembly of microstruc tures using optothermally generated surface bubble microrobots. Small 15 , 1902815 (2019)..
Jiang, Q. B. et al. Temperature measurement in plasmonic nanoapertures used for optical trapping. ACS Photonics 6 , 1763–1773 (2019)..
Chen, Y., Chu, J. R. & Xu, X. F. Plasmonic multibowtie aperture antenna with fano resonance for nanoscale spectral sorting. ACS Photonics 3 , 1689–1697 (2016)..
Huang, C. H. et al. Plasmonic dipole and quadrupole scattering modes determine optical trapping, optical binding, and swarming of gold nanoparticles. J. Phys. Chem. C. 128 , 5731–5740 (2024)..
Kiselev, A. et al. Multipole interplay controls optical forces and ultra-directional scattering. Opt. Express 28 , 27547–27560 (2020)..
Schraivogel, D. et al. High-speed fluorescence image–enabled cell sorting. Science 375 , 315–320 (2022)..
Ota, S. et al. Ghost cytometry. Science 360 , 1246–1251 (2018)..
Kawamura, Y. et al. Label-free cell detection of acute leukemia using ghost cytometry. Cytom. Part A 105 , 196–202 (2024)..
Tsubouchi, A. et al. Pooled CRISPR screening of high-content cellular phenotypes using ghost cytometry. Cell Rep. Methods 4 , 100737 (2024)..
Scherer, M. et al. Machine learning for deciphering cell heterogeneity and gene regulation. Nat. Comput. Sci. 1 , 183–191 (2021)..
Aevermann, B. et al. A machine learning method for the discovery of minimum marker gene combinations for cell type identification from single-cell RNA sequencing. Genome Res. 31 , 1767–1780 (2021)..
Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16 , 1233–1246 (2019)..
Lee, K. et al. User-friendly image-activated microfluidic cell sorting technique using an optimized, fast deep learning algorithm. Lab a Chip 21 , 1798–1810 (2021)..
Salek, M. et al. COSMOS: a platform for real-time morphology-based, label-free cell sorting u sing deep learning. Commun. Biol. 6 , 971 (2023)..
Mayr, L. M. & Bojanic, D. Novel trends in high-throughput screening. Curr. Opin. Pharmacol. 9 , 580–588 (2009)..
Nandy, A. et al. Computational discovery of transition-metal complexes: from high-throughput screening to machine learning. Chem. Rev. 121 , 9927–10000 (2021)..
Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20 , 257–272 (2019)..
LaBelle, C. A. et al. Image-based live cell sorting. Trends Biotechnol. 39 , 613–623 (2021)..
Wang, Z. Y. et al. Vectorial liquid-crystal holography. eLight 4 , 5 (2024)..
Lorenz, H. & Seidel-Morgenstern, A. Processes to separate enantiomers. Angew. Chem. Int. Ed. 53 , 1218–1250 (2014)..
Maier, N. M., Franco, P. & Lindner, W. Separation of enantiomers: needs, challenges, perspectives. J. Chromatogr. A 906 , 3–33 (2001)..
Shen, J. & Okamoto, Y. Efficient separation of enantiomers using stereoregular chiral polymers. Chem. Rev. 116 , 1094–1138 (2016)..
Liu, X. G. et al. Separation of chiral enantiomers by optical force and torque induced by tightly focused vector polarized hollow beams. Phys. Chem. Chem. Phys. 21 , 15339–15345 (2019)..
Chen, H. J. et al. Optical torque on small chiral particles in generic optical fields. Opt. Express 25 , 32867–32878 (2017)..
Wu, M. X. et al. Acoustofluidic separation of cells and particles. Microsyst. Nanoengineering 5 , 32 (2019)..
Wu, M. X. et al. Acoustic separation of nanoparticles in continuous flow. Adv. Funct. Mater. 27 , 1606039 (2017)..
Adams, J. D. et al. High-throughput, temperature-controlled microchannel acoustophoresis device made with rapid prototyping. J. Micromech. Microeng. 22 , 075017 (2012)..
Sano, N., Tanemori, Y. & Tamon, H. A selective dielectrophoretic particle separator using flat electrodes covered with vertically aligned carbon nanotubes. Chem. Eng. Sci. 144 , 321–325 (2016)..
Pesch, G. R. & Du, F. A review of dielectrophoretic separation and classification of non-biological particles. Electrophoresis 42 , 134–152 (2021)..
Li, Y. L. et al. On the design, functions, and biomedical applications of high-throughput dielectrophoretic micro-/nanoplatforms: a review. Nanoscale 13 , 4330–4358 (2021)..
Sun, H. Z. et al. Continuous particle trapping, switching, and sorting utilizing a combination of dielectrophoresis and alternating current electrothermal flow. Anal. Chem. 91 , 5729–5738 (2019)..
Lewis, J. M. et al. Integrated analysis of exosomal protein biomarkers on alternating current electrokinetic chips enables rapid detection of pancreatic cancer in patient blood. ACS Nano 12 , 3311–3320 (2018)..
Zeng, L. et al. Extraction of small extracellular vesicles by label-free and biocompatible on-chip magnetic separation. Lab a Chip 22 , 2476–2488 (2022)..
Zeng, L. et al. High-resolution separation of nanoparticles using a negative magnetophoretic microfluidic system. Micromachines 13 , 377 (2022)..
Civelekoglu, O., Frazier, A. B. & Sarioglu, A. F. The origins and the current applications of microfluidics-based magnetic cell separation technologies. Magnetochemistry 8 , 10 (2022)..
Patel, G. K. et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci. Rep. 9 , 5335 (2019)..
Najjar, Y. S. H. & Abu-Shamleh, A. Harvesting of microalgae by centrifugation for biodiesel production: a review. Algal Res. 51 , 102046 (2020)..
Arosio, P. et al. Density-gradient-free microfluidic centrifugation for analytical and preparative separation of nanoparticles. Nano Lett. 14 , 2365–2371 (2014)..
Tauro, B. J. et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56 , 293–304 (2012)..
Kammakakam, I. & Lai, Z. P. Next-generation ultrafiltration membranes: a review of material design, properties, recent progress, and challenges. Chemosphere 316 , 137669 (2023)..
Ji, X. Z. et al. Advances in particulate matter filtration: materials, performance, and application. Green. Energy Environ. 8 , 673–697 (2023)..
Liu, H. et al. Progress on particulate matter filtration technology: basic concepts, advanced materials, and performances. Nanoscale 12 , 437–453 (2020)..
Chen, M. R. et al. From conventional to microfluidic: progress in extracellular vesicle separation and individual characterization. Adv. Healthc. Mater. 12 , 2202437 (2023)..
Zhou, Z. X., Chen, Y. & Qian, X. Target-specific exosome isolation through aptamer-based microfluidics. Biosensors 12 , 257 (2022)..
Zhang, P. et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 3 , 438–451 (2019)..
Shen, Y. G., Yalikun, Y. & Tanaka, Y. Recent advances in microfluidic cell sorting systems. Sens. Actuators B: Chem. 282 , 268–281 (2019)..
Loutherback, K. et al. Deterministic separation of cancer cells from blood at 10 mL/min. AIP Adv. 2 , 042107 (2012)..
Hattori, Y. et al. Micro- and nanopillar chips for continuous separation of extracellular vesicles. Anal. Chem. 91 , 6514–6521 (2019)..
Dey, T. Microplastic pollutant detection by Surface Enhanced Raman Spectroscopy (SERS): a mini-review. Nanotechnol. Environ. Eng. 8 , 41–48 (2023)..
Zhu, Y. J. et al. Deep learning-based predictive identification of neural stem cell differentiation. Nat. Commun. 12 , 2614 (2021)..
Karnieli, A. et al. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect. Nat. Commun. 12 , 1092 (2021)..
Baek, J. & Choi, Y. Deep neural network for predicting ore production by truck-haulage systems in open-pit mines. Appl. Sci. 10 , 1657 (2020)..
Guo, F. et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl Acad. Sci. USA 113 , 1522–1527 (2016)..
Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20 , 101–124 (2021)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution