无数据
1.Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
2.State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
3.School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
4.Key Laboratory of Flexible Optoelectronic Materials and Technology (Jianghan University), Ministry of Education, Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province and School of Optoelectronic Materials & Technology, Jianghan University, 8 Sanjiaohu Road, Wuhan 430056, China
Zhengzheng Liu (liuzhengzheng@siom.ac.cn)
Jiajin Luo (luojiajun@hust.edu.cn)
Juan Du (du@ucas.ac.cn)
Received:01 July 2024,
Revised:25 December 2024,
Accepted:02 January 2025,
Published Online:10 March 2025,
Published:31 May 2025
Scan QR Code
Liu, N. et al. Fluorine-modified passivator for efficient vacuum-deposited pure-red perovskite light-emitting diodes. Light: Science & Applications, 14, 1235-1243 (2025).
Liu, N. et al. Fluorine-modified passivator for efficient vacuum-deposited pure-red perovskite light-emitting diodes. Light: Science & Applications, 14, 1235-1243 (2025). DOI: 10.1038/s41377-025-01740-1.
Vacuum-deposited perovskite light-emitting diodes (PeLEDs) have demonstrated significant potential for high-color-gamut active-matrix displays. Despite the rapid advance of green PeLEDs
red ones remain a considerable challenge because of the inferior photophysical properties of vacuum-deposited red-light-emitting materials. Here
a rationally designed fluorine-modified phosphine oxide additive was introduced to in-situ passivate vacuum-deposited perovskites. The highly polar 2-F-TPPO incorporated perovskite films demonstrated enhanced photoluminescence quantum yield (PLQY)
suppressed defects
and improved crystallinity. When implemented as active layers in PeLEDs
an external quantum efficiency (EQE) of 12.6% with an emission wavelength of 640 nm is achieved
which was 6 times higher compared to the previously reported most efficient vacuum-deposited red PeLEDs (EQE below 2%). Our findings lay the foundations for the further exploration of high-performance vacuum-deposited PeLEDs toward full-color perovskite displays.
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX 3 , X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15 , 3692–3696 (2015)..
Jiang, J. et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations. Adv. Mater. 34 , 2204460 (2022)..
Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611 , 688–694 (2022)..
Quan, L. N. et al. Perovskites for light emission. Adv. Mater. 30 , 1801996 (2018)..
Han, T. H. et al. A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7 , 757–777 (2022)..
Luo, J. J. et al. Efficient and stable emission of warm-white lig ht from lead-free halide double perovskites. Nature 563 , 541–545 (2018)..
Yan, F. & Demir, H. V. Vacuum-evaporated lead halide perovskite LEDs [invited. Opt. Mater. Express 12 , 256–271 (2022)..
Vaynzof, Y. The future of perovskite photovoltaics—thermal evaporation or solution processing? Adv. Energy Mater. 10 , 2003073 (2020)..
Kosasih, F. U. et al. Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules. Joule 6 , 2692–2734 (2022)..
Kim, Y. H. et al. Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 17 , 590–597 (2022)..
Zhang, D. D., Huang, T. Y. & Duan, L. Emerging self-emissive technologies for flexible displays. Adv. Mater. 32 , 1902391 (2020)..
Geffroy, B., Le Roy, P. & Prat, C. Organic light-emitting diode (OLED) technology: materials, devicesand display technologies. Polym. Int. 55 , 572–582 (2006)..
Du, P. P. et al. Thermal evaporation for halide perovskite optoelectronics: fundamentals, progress, and outlook. Adv. Opt. Mater. 10 , 2101770 (2022)..
Bae, S. R., Heo, D. Y. & Kim, S. Y. Recent progress of perovskite devices fabricated using thermal evaporation method: perspective and outlook. Mater. Today Adv. 14 , 100232 (2022)..
Rybak, O. V. & Kurilo, I. V. Equilibrium vapor composition in the Pb–I 2 system. Inorg. Mater. 38 , 735–737 (2002)..
Iizuka, A. et al. Vapor pressure measurements of PbBr 2 by the Knudsen effusion method and identification of its vapor species. Thermochim. Acta 622 , 103–106 (2015)..
Bai, T. X. Y. et al. Vacuum evaporation of high-quality CsPbBr 3 thin films for efficient light-emitting diodes. Nanoscale Res. Lett. 17 , 69 (2022)..
Samuel, R. The dissociation spectra of covalent polyatomic molecules. Rev. Mod. Phys. 18 , 103–147 (1946)..
Ghosh, S. & Ghosh, T. K. Spectroscopic properties and bond dissociation energies of PbX, PbX ± , PbX 2 and (X = F, Cl, Br, I). J. Indian Chem. Soc. 99 , 100310 (2022)..
Li, J. H. et al. High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Adv. Funct. Mater. 29 , 1903607 (2019)..
Hsieh, C. A. et al. Vacuum-deposited inorganic perovskite light-emitting diodes with external quantum efficiency exceeding 10% via composition and crystallinity manipulation of emission layer under high vacuum. Adv. Sci. 10 , 2206076 (2023)..
Du, P. P. et al. Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat. Commun. 12 , 4751 (2021)..
Li, J. H. et al. All-vacuum fabrication of yellow perovskite light-emitting diodes. Sci. Bull. 67 , 178–185 (2022)..
Qin, F. Y. et al. Cesium-lead-bromide perovskites with balanced stoichiometry enabled by sodium-bromide doping for all-vacuum deposited silicon-based light-emitting diodes. J. Mater. Chem. C. 9 , 2016–2023 (2021)..
Murata, A. et al. Effect of high-temperature post-deposition annealing on cesium lead bromide thin films deposited by vacuum evaporation. AIP Adv. 10 , 045031 (2020)..
Li, J. H. et al. Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photonics 17 , 435–441 (2023)..
Zhu, J. X. et al. All-thermally evaporated blue perovskite light-emitting diodes for active matrix displays. Small Methods 8 , 2300712 (2024)..
Liu, H. et al. Regulation on electron density distribution of organic molecule passivator enables efficient and stable perovskite solar cells. Chem. Eng. J. 480 , 148320 (2024)..
Su, H. et al. Modulation on electrostatic potential of passivator for highly efficient and stable perovskite solar cells. Adv. Funct. Mater. 33 , 2213123 (2023)..
Lin, R. X. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603 , 73–78 (2022)..
Su, H. et al. Polarity regulation for stable 2D-perovskite-encapsulated high-efficiency 3D-perovskite solar cells. Nano Energy 95 , 106965 (2022)..
Guo, J. et al. High efficiency and low roll-off pure-red perovskite LED enabled by simultaneously inhibiting auger and trap recombination of quantum dots. Nano Lett. 24 , 6410–6416 (2024)..
McGrath, F., Ghorpade, U. V. & Ryan, K. M. Synthesis and dimensional control of CsPbBr 3 perovskite nanocrystals using phosphorous based ligands. J. Chem. Phys. 152 , 174702 (2020)..
Chen, R. et al. Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8 , 839–849 (2023)..
Tong, J. H. et al. Carrier lifetimes of > 1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364 , 475–479 (2019)..
Zhao, C. Y. et al. Phosphonate/phosphine oxide dyad additive for efficient perovskite light-emitting diodes. Angew. Chem. Int. Ed. 61 , e202117374 (2022)..
Wang, H. R. et al. Trifluoroacetate induced small-grained CsPbBr 3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10 , 665 (2019)..
Li, M. L. et al. Phase regulation and defect passivation enabled by phosphoryl chloride molecules for efficient quasi-2D perovskite light-emitting diodes. Nano Micro Lett. 15 , 119 (2023)..
Lee, S. et al. Growth of nanosized single crystals for efficient perovskite light-emitting diodes. ACS Nano 12 , 3417–3423 (2018)..
Luo, J. J. et al. Vapour-deposited perovskite light-emitting diodes. Nat. Rev. Mater. 9 , 282–294 (2024)..
Davies, C. L. et al. Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process. Nat. Commun. 9 , 293 (2018)..
Xu, W. L. et al. Highly efficient radiative recombination in intrinsically zero-dimensional perovskite micro-crystals prepared by thermally-assisted solution-phase synthesis. RSC Adv. 10 , 43579–43584 (2020)..
Wang, Y. N. et al. Strong triplet-exciton–LO-phonon coupling in two-dimensional layered organic–inorganic hybrid perovskite single crystal microflakes. J. Phys. Chem. Lett. 12 , 2133–2141 (2021)..
Long, H. et al. Acoustic phonon-exciton interaction by extremely strong exciton confinement and large phonon energy in CsPbBr 3 perovskite. Appl. Phys. Express 12 , 052003 (2019)..
Liu, M. M. et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photonics 15 , 379–385 (2021)..
Sun, C. J. et al. High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 12 , 2207 (2021)..
Liu, X. K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20 , 10–21 (2021)..
Chen, Z. M. et al. Recombination dynamicsstudy on nanostructured perovskite light-emitting devices. Adv. Mater. 30 , 1801370 (2018)..
Guo, S., Liu, H. F. & Liu, Y. F. Effic ient all-inorganic red perovskite light-emitting diodes with dual-interface-modified perovskites by vapor deposition. Opt. Lett. 47 , 2694–2697 (2022)..
Yuan, F. et al. All-inorganic hetero-structured cesium tin halide perovskite light-emitting diodes with current density over 900 A cm −2 and its amplified spontaneous emission behaviors. Phys. Status Solidi (RRL) Rapid Res. Lett. 12 , 1800090 (2018)..
Han, B. N. et al. Giant efficiency and color purity enhancement in multicolor inorganic perovskite light-emitting diodes via heating-assisted vacuum deposition. J. Semicond. 41 , 052205 (2020)..
Gil-Escrig, L. et al. Mixed iodide-bromide methylammonium lead perovskite-based diodes for light emission and photovoltaics. J. Phys. Chem. Lett. 6 , 3743–3748 (2015)..
Dänekamp, B. et al. Efficient photo- and electroluminescence by trap states passivation in vacuum-deposited hybrid perovskite thin films. ACS Appl. Mater. Interfaces 10 , 36187–36193 (2018)..
Xie, M. Y. et al. High-efficiency pure-red perovskite quantum-dot light-emitting diodes. Nano Lett. 22 , 8266–8273 (2022)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution