1.Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité and CNRS, Paris 75013, France
2.Université Grenoble Alpes, CEA, INP, IRIG, PHELIQS, Grenoble 38000, France Full list of author information is available at the end of the article
3.Centre de Nanosciences et de Nanotechnologies, CNRS - Université Paris-Saclay, Palaiseau 91120, France
4.Institut universitaire de France (IUF), Paris, France
Giuseppe Leo (giuseppe.leo@u-paris.fr)
Received:10 October 2024,
Revised:27 December 2024,
Accepted:2025-01-02,
Published Online:16 January 2025,
Published:31 March 2025
Scan QR Code
Coudrat, L. et al. Unravelling the nonlinear generation of designer vortices with dielectric metasurfaces. Light: Science & Applications, 14, 665-672 (2025).
Coudrat, L. et al. Unravelling the nonlinear generation of designer vortices with dielectric metasurfaces. Light: Science & Applications, 14, 665-672 (2025). DOI: 10.1038/s41377-025-01741-0.
Vortex beams are currently drawing a great deal of interest
from fundamental research to several promising applications. While their generation in bulky optical devices limits their use in integrated complex systems
metasurfaces have recently proven successful in creating optical vortices
especially in the linear regime. In the nonlinear domain
of strategic importance for the future of classical and quantum information
to date orbital angular momentum has only been created in qualitative ways
without discussing discrepancies between design and experimental results. Here
we demonstrate and analyze the generation of high-purity second harmonic (SH) optical vortices via dielectric meta-holograms. Through full-wave simulations and a proper fabrication protocol
we achieve efficient frequency doubling of an unstructured pump beam into SH vortices with topological charges from 1 to 10. Interferometric and modal-purity measurements confirm the generation of high-quality SH vortices with minimal deviations from the intended design thanks to a quasi-local control over the SH phase. Through systematic comparisons between experimental data and semi-analytical calculations
we also provide a clear insight into the occurrence of ghost vortices in the metasurface-generated harmonic beams
highlighting the importance of simple designs that can be readily transposed into fabricated devices with high fidelity. Our findings underscore the potential of nonlinear dielectric metasurfaces for versatile structured-light generation and manipulation
paving the way for future developments in integrated photonic systems.
Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photonics 15 , 253–262 (2021)..
Rubinsztein-Dunlop, H. et al. Roadmap on structured light. J. Opt. 19 , 013001 (2017)..
Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45 , 8185–8189 (1992)..
Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3 , 161 (2011)..
Lavery, M. P. J., Speirits, F. C., Barnett, S. M. & Padgett, M. J. Detection of a spinning object using light’s orbital angular momentum. Science 341 , 537–540 (2013)..
Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6 , 488–496 (2012)..
Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340 , 1545–1548 (2013)..
Molina-Terriza, G., Vaziri, A., Řeháček, J., Hradil, Z. & Zeilinger, A. Triggered qutrits for quantum communication protocols. Phys. Rev. Lett. 92 , 167903 (2004)..
Hell, S. W. Far-field optical nanoscopy. Science 316 , 1153–1158 (2007)..
Vicidomini, G., Bianchini, P. & Diaspro, A. STED super-resolved microscopy. Nat. Methods 15 , 173–182 (2018)..
Beijersbergen, M. W. & Allen, L. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun . 96 , 123–132 (1993)..
Carpentier, A. V., Michinel, H., Salgueiro, J. R. & Olivieri, D. Making optical vortices with computer-generated holograms. Am. J. Phys. 76 , 916–921 (2008)..
Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96 , 163905 (2006)..
Zhao, Y., Edgar, J. S., Jeffries, G. D. M., McGloin, D. & Chiu, D. T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99 , 073901 (2007)..
Buono, W. T. & Forbes, A. Nonlinear optics with structured light. Opto Electron. Adv. 5 , 210174–210174 (2022)..
Dholakia, K., Simpson, N. B., Padgett, M. J. & Allen, L. Second-harmonic generation and the orbital angular momentum of light. Phys. Rev. A 54 , R3742–R3745 (1996)..
Li, Y., Zhou, Z.-Y., Ding, D.-S. & Shi, B.-S. Sum frequency generation with two orbital angular momentum carrying laser beams. J. Opt. Soc. Am. B 32 , 407 (2015)..
Tang, Y. et al. Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals. Nat. Photonics 14 , 658–662 (2020)..
Pinheiro Da Silva, B. et al. Spin to orbital angular momentum transfer in frequency up-conversion. Nanophotonics 11 , 771–778 (2022)..
De Ceglia, D. et al. Nonlinear spin-orbit coupling in optical thin films. Nat. Commun. 15 , 1625 (2024)..
Genevet, P. et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl. Phys. Lett. 100 , 013101 (2012)..
Gorodetski, Y., Drezet, A., Genet, C. & Ebbesen, T. W. Generating far-field orbital angular momenta from near-field optical chirality. Phys. Rev. Lett. 110 , 203906 (2013)..
Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13 , 139–150 (2014)..
Genevet, P. & Capasso, F. Holographic optical metasurfaces: a review of current progress. Rep. Prog. Phys. 78 , 024401 (2015)..
Guo, X. et al. Tying polarization‐switchable optical vortex knots and links via holographic all‐dielectric metasurfaces. Laser Photonics Rev. 14 , 1900366 (2020)..
De Oliveira, M. et al. Radially and azimuthally pure vortex beams from phase-amplitude metasurfaces. ACS Photonics 10 , 290–297 (2023)..
Gigli, C. et al. Fundamental limitations of Huygens’ metasurfaces for optical beam shaping. Laser Photonics Rev. 15 , 2000448 (2021)..
Liu, H. et al. Enhanced high-harmonic generation from an all-dielectric metasurface. Nat. Phys. 14 , 1006–1010 (2018)..
Zograf, G. et al. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum. ACS Photonics 9 , 567–574 (2022)..
Zalogina, A. et al. High-harmonic generation from a subwavelength dielectric resonator. Sci. Adv. 9 , eadg2655 (2023)..
Wang, L. et al. Nonlinear wavefront control with all-dielectric metasurfaces. Nano Lett. 18 , 3978–3984 (2018)..
Ma, M. et al. Optical information multiplexing with nonlinear coding metasurfaces. Laser Photonics Rev. 13 , 1900045 (2019)..
Reineke, B. et al. Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography. Nano Lett. 19 , 6585–6591 (2019)..
Gigli, C. et al. Tensorial phase control in nonlinear meta-optics. Optica 8 , 269 (2021)..
Wang, B. et al. Resonant nonlinear synthetic metasurface with combined phase and amplitude modulations. Laser Photonics Rev. 15 , 2100031 (2021)..
Wang, M. et al. Nonlinear ciroptical holography with pancharatnam–berry phase controlled plasmonic metasurface. Laser Photonics Rev. 16 , 2200350 (2022)..
Keren-Zur, S., Avayu, O., Michaeli, L. & Ellenbogen, T. Nonlinear beam shaping with plasmonic metasurfaces. ACS Photonics 3 , 117–123 (2016)..
Li, G. et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation. Nano Lett. 17 , 7974–7979 (2017)..
Rong, R. et al. Beam steering of nonlinear optical vortices with phase gradient plasmonic metasurfaces. ACS Photonics 10 , 3248–3254 (2023)..
Reineke Matsudo, B. et al. Efficient frequency conversion with geometric phase control in optical metasurfaces. Adv. Sci . 9 , 2104508 (2022).
Gehrsitz, S. et al. The refractive index of Al x Ga 1−x As below the band gap: accurate determination and empirical modeling. J. Appl. Phys. 87 , 7825–7837 (2000)..
Sfigakis, F. et al. Near-infrared refractive index of thick, laterally oxidized AlGaAs cladding layers. J. Light. Technol. 18 , 199–202 (2000)..
Shoji, I., Kondo, T., Kitamoto, A., Shirane, M. & Ito, R. Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B 14 , 2268 (1997)..
Carletti, L., Locatelli, A., Neshev, D. & De Angelis, C. Shaping the radiation pattern of second-harmonic generation from AlGaAs dielectric nanoantennas. ACS Photonics 3 , 1500–1507 (2016)..
Xu, L. et al. Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas. ACS Nano 14 , 1379–1389 (2020)..
Marino, G. et al. Zero-order second harmonic generation from AlGaAs-on-insulator metasurfaces. ACS Photonics 6 , 1226–1231 (2019)..
Rocco, D. et al. Vertical second harmonic generation in asymmetric dielectric nanoantennas. IEEE Photonics J. 12 , 1–7 (2020)..
Harris, M., Hill, C. A. & Vaughan, J. M. Optical helices and spiral interference fringes. Opt. Commun . 106 , 161–166 (1994)..
Schanne, D., Suffit, S., Filloux, P., Lhuillier, E. & Degiron,A. Spontaneous emission of vector vortex beams. Phys. Rev. Appl. 14 , 064077 (2020)..
Yang, J., Hugonin, J.-P. & Lalanne, P. Near-to-far field transformations for radiative and guided waves. ACS Photonics 3 , 395–402 (2016)..
Gili, V. F. et al. Monolithic AlGaAs second-harmonic nanoantennas. Opt. Express 24 , 15965 (2016)..
Gigli, C. et al. Polarization- and diffraction-controlled second-harmonic generation from semiconductor metasurfaces. J. Opt. Soc. Am. B 36 , E55 (2019)..
Pinnell, J. et al. Modal analysis of structured light with spatial light modulators: a practical tutorial. J. Opt. Soc. Am. A 37 , C146 (2020)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution