State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Cai, Z. Y. & Bao, C. Y. Microcavity optomechanical magnetometry with picotesla-sensitivity. Light: Science & Applications, 14, 871-872 (2025).
DOI:
Cai, Z. Y. & Bao, C. Y. Microcavity optomechanical magnetometry with picotesla-sensitivity. Light: Science & Applications, 14, 871-872 (2025). DOI: 10.1038/s41377-025-01767-4.
Microcavity optomechanical magnetometry with picotesla-sensitivity
A new microcavity magnetometry with FeGaB thin film achieves 1.68 pT/Hz
1/2
sensitivity
which is two orders of magnitude improvement over previous work. Corona current detection has been demonstrated using this magnetometer.
关键词
Keywords
references
Vahala, K. J. Optical microcavities. Nature 424 , 839–846 (2003)..
Yang, J. N. et al. Enhanced emission from a single quantum dot in a microdisk at a deterministic diabolical point. Opt. Express 29 , 14231–14244 (2021)..
Kippenberg, T. J. et al. Dissipative Kerr solitons in optical microresonators. Science 361 , eaan8083 (2018)..
Zhi, Y. Y. et al. Single nanoparticle detection using optical microcavities. Adv. Mater. 29 , 1604920 (2017)..
Tang, S. J. et al. Single-particle photoacoustic vibrational spectroscopy using optical microresonators. Nat. Photonics 17 , 951–956 (2023)..
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86 , 1391–1452 (2014)..
Verhagen, E. et al. Quantum-coherent coupling of a mechanical oscillator toan optical cavity mode. Nature 482 , 63–67 (2012)..
Weis, S. et al. Optomechanically induced transparency. Science 330 , 1520–1523 (2010)..
Lee, K. H. et al. Cooling and control of a cavity optoelectromechanical system. Phys. Rev. Lett. 104 , 123604 (2010)..
Gavartin, E., Verlot, P. & Kippenberg, T. J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol. 7 , 509–514 (2012)..
Krause, A. G. et al. A high-resolution microchip optomechanical accelerometer. Nat. Photonics 6 , 768–772 (2012)..
Yang, H. et al. High-sensitivity air-coupled megahertz-frequency ultrasound d etection using on-chip microcavities. Phys. Rev. Appl. 18 , 034035 (2022)..
Yang, H. et al. Micropascal-sensitivity ultrasound sensors based on optical microcavities. Photonics Res. 11 , 1139–1147 (2023)..
Li, B. B. et al. Ultrabroadband and sensitive cavity optomechanical magnetometry. Photonics Res. 8 , 1064–1071 (2020)..
Li, B. B. et al. Invited article: scalable high-sensitivity optomechanical magnetometers on a chip. APL Photonics 3 , 120806 (2018)..
Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré chern insulator. Science 372 , 1323–1327 (2021)..
Dang, H. B., Maloof, A. C. & Romalis, M. V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett. 97 , 151110 (2010)..
Hu, Z. G. et al. Picotesla-sensitivity microcavity optomechanical magnetometry. Light Sci. Appl. 13 , 279 (2024)..