无数据
1.International Quantum Academy, Shenzhen 518048, China
2.School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
3.Qaleido Photonics, Shenzhen 518048, China
4.Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Baile Chen (chenbl@shanghaitech.edu.cn)
Junqiu Liu (liujq@iqasz.cn)
Received:17 September 2024,
Revised:07 February 2025,
Accepted:18 February 2025,
Published Online:30 April 2025,
Published:31 July 2025
Scan QR Code
Sun, W. et al. A chip-integrated comb-based microwave oscillator. Light: Science & Applications, 14, 1870-1881 (2025).
Sun, W. et al. A chip-integrated comb-based microwave oscillator. Light: Science & Applications, 14, 1870-1881 (2025). DOI: 10.1038/s41377-025-01795-0.
Low-noise microwave oscillators are cornerstones for wireless communication
radar and clocks. The employment and optimization of optical frequency combs have enabled photonic microwave synthesizers with unrivalled noise performance and bandwidth breaking the bottleneck of those electronic counterparts. Emerging interest is to use chip-based Kerr frequency combs
namely microcombs. Today microcombs built on photonic integrated circuits feature small size
weight and power consumption
and can be manufactured to oscillate at any frequency ranging from microwave to millimeter-wave band. A monolithic microcomb-based microwave oscillator requires integration of lasers
photodetectors and nonlinear microresonators on a common substrate
which however has still remained elusive. Here
we demonstrate the first
fully hybrid-integrated
microcomb-based microwave oscillator at 10.7 GHz. The chip device
powered by a customized microelectronic circuit
leverages hybrid integration of a high-power DFB laser
a silicon nitride microresonator of a quality factor exceeding 25 × 10
6
and a high-speed photodetector chip of 110 GHz bandwidth (3 dB) and 0.3 A/W responsivity. Each component represents the state of the art of its own class
yet also allows large-volume manufacturing with low cost using established CMOS and Ⅲ-Ⅴ foundries. The hybrid chip outputs an ultralow-noise laser of 6.9 Hz intrinsic linewidth
a coherent microcomb of 10.7 GHz repetition rate
and a 10.7 GHz microwave carrier of 6.3 mHz linewidth – all the three functions in one entity occupying a footprint of only 76 mm
2
. Furthermore
harnessing the nonlinear laser-microresonator interaction
we observe and maneuver a unique noise-quenching dynamics within discrete microcomb states
which offers immunity to laser current noise
suppression of microwave phase noise by more than 20 dB
and improvement of microwave power by up to 10 dB. The ultimate microwave phase noise reaches −75/−105/−130 dBc/Hz at 1/10/100 kHz Fourier offset frequency. Our results can reinvigorate our information society for communication
sensing
imaging
timing and precision measurement.
Fortier, T. M. et al. Generation of ultr astable microwaves via optical frequency division. Nat. Photonics 5 , 425–429 (2011)..
Xie, X. P. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photonics 11 , 44–47 (2017)..
Li, J. et al. Electro-optical frequency division and stable microwave synthesis. Science 345 , 309–313 (2014)..
Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6 , 7957 (2015)..
Liu, J. Q. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics 14 , 486–491 (2020)..
Yao, L. et al. Soliton microwave oscillators using oversized billion Q optical microresonators. Optica 9 , 561–564 (2022)..
Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4 , 2097 (2013)..
Li, J. & Va hala, K. Small-sized, ultra-low phase noise photonic microwave oscillators at X-Ka bands. Optica 10 , 33–34 (2023)..
Tang, J. et al. Integrated optoelectronic oscillator. Opt. Express 26 , 12257–12265 (2018)..
Cundiff, S. T. & Ye, J. Colloquium : femtosecond optical frequency combs. Rev. Mod. Phys. 75 , 325–342 (2003)..
Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2 , 153 (2019)..
Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369 , eaay3676 (2020)..
Nakamura, T. et al. Coherent optical clock down-conversion for microwave frequencies with 10 −18 instability. Science 368 , 889–892 (2020)..
Kippenberg, T. J. et al. Dissipative Kerr solitons in optical microresonators. Science 361 , eaan8083 (2018)..
Pasquazi, A. et al. Micro-combs: a novelgeneration of optical sources. Phys. Rep. 729 , 1–81 (2018)..
Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photonics 8 , 145–152 (2014)..
Yi, X. et al. Soliton frequency comb at microwave rates in a high- Q silica microresonator. Optica 2 , 1078–1085 (2015)..
Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351 , 357–360 (2016)..
Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41 , 2565–2568 (2016)..
Xue, X. X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics 9 , 594–600 (2015)..
Yang, Q. F. et al. Efficient microresonator frequency combs. eLight 4 , 18 (2024)..
Yao, B. C . et al. Interdisciplinary advances in microcombs: bridging physics and information technology. eLight 4 , 19 (2024)..
Moss, D. J. et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 7 , 597–607 (2013)..
Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13 , 158–169 (2019)..
Liu, J. Q. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12 , 2236 (2021)..
Kovach, A. et al. Emerging material systems for integrated optical Kerr frequency combs. Adv. Opt. Photonics 12 , 135–222 (2020)..
Chang, L., Liu, S. T. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photonics 16 , 95–108 (2022)..
Kudelin, I. et al. Photonic chip-based low-noise microwave oscillator. Nature 627 , 534–539 (2024)..
Sun, S. M. et al. Integrated optical frequency division for microwave and mmWave generation. Nature 627 , 540–545 (2024)..
Zhao, Y. et al. All-optical frequency division on-chip using a single laser. Nature 627 , 546–552 (2024)..
Jin, X. et al. Microresonator-referenced soliton microcombs with zeptosecond-level timing noise. Print at https://doi.org/10.48550/arXiv.2401.12760 https://doi.org/10.48550/arXiv.2401.12760 (2024).
He, Y. et al. Chip-scale high-performance photonic microwave oscillator. Sci. Adv. 10 , eado9570 (2024)..
Stern, B. et al. Battery-operated integrated frequency comb generator. Nature 562 , 401–405 (2018)..
Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun. 10 , 680 (2019)..
Shen, B. Q. et al. Integrated turnkey soliton microcombs. Nature 582 , 365–369 (2020)..
Lihachev, G. et al. Platicon microcomb generation using laser self-injection locking. Nat. Commun. 13 , 1771 (2022)..
Ye, Z. C. et al. Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits. Photonics Res. 11 , 558–568 (2023)..
Luke, K. et al. Overcoming Si 3 N 4 film stress limitations for high quality factor ring resonators. Opt. Express 21 , 22829–22833 (2013)..
Muñoz, P. et al. Foundry developments toward silicon nitride photonics from visible to the mid-infrared. IEEE J. Sel. Top. Quantum Electron. 25 , 8200513 (2019)..
Xiang, C., Jin, W. & Bowers, J. E. Silicon nitride passive and active photonic integrated circuits: trends and prospects. Photonics Res. 10 , A82–A96 (2022)..
Luo, Y. H. et al. A wideband, high-resolution vector spectrum analyzer for integrated photonics. Light Sci. Appl. 13 , 83 (2024)..
Lobanov, V. E. et al. Frequency combs and platicons in optical microresona tors with normal GVD. Opt. Express 23 , 7713–7721 (2015)..
Huang, S. W. et al. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett. 114 , 053901 (2015)..
Parra-Rivas, P. et al. Origin and stability of dark pulse Kerr combs in normal dispersion resonators. Opt. Lett. 41 , 2402–2405 (2016)..
Nazemosadat, E. et al. Switching dynamics of dark-pulse Kerr frequency comb states in optical microresonators. Phys. Rev. A 103 , 013513 (2021)..
Okawachi, Y. et al. Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. Opt. Lett. 39 , 3535–3538 (2014)..
Xue, X. X. et al. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photonics Rev. 11 , 1600276 (2017)..
Jang, J. K. et al. Conversion efficiency of soliton Kerr combs. Opt. Lett. 46 , 3657–3660 (2021)..
Li, L. Z., Wang, L. Y.&Chen, B. L. High-speed waveguide modified uni-traveling carrier photodiodes with 130 GHz bandwidth. Proceedings of 2023 Opto-Electronics and Communications Conference. Shanghai: IEEE, 1-3, 2023.
Liang, W. et al. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun. 6 , 7371 (2015)..
Kondratiev, N. M. et al. Self-injection locking of a laser diode to a high- Q WGM microresonator. Opt. Express 25 , 28167–28178 (2017)..
Kondratiev, N. M. et al. Recent advances in laser self-injection locking to high- Q microresonators. Front. Phys. 18 , 21305 (2023)..
Voloshin, A. S. et al. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun. 12 , 235 (2021)..
Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high- Q microresonators. Nat. Photonics 15 , 346–353 (2021)..
Bao, C. Y. et al. Observation of breathing dark pulses in normal dispersion optical microresonators. Phys. Rev. Lett. 121 , 257401 (2018)..
Yuan, Z. Q. et al. Correlated self-heterodyne method for ultra-low-noise laser linewidth measurements. Opt. Express 30 , 25147–25161 (2022)..
Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58 , 2209–2211 (1987)..
Yi, X. et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun. 8 , 14869 (2017)..
Rebolledo-Salgado, I. et al. Platicon dynamics in photonic molecules. Commun. Phys. 6 , 303 (2023)..
Li, S. et al. Universal Kerr-thermal dynamics of self-injection-locked microresonator dark pulses. Print at https://arxiv.org/abs/2502.03001/arXiv.2502.03001 https://arxiv.org/abs/2502.03001/arXiv.2502.03001 (2025).
Guo, J. et al. Chip-based laser with 1-hertz integrated linewidth. Sci. Adv. 8 , eabp9006 (2022)..
Cheng, H. T. et al. A novel approach to i nterface high- Q Fabry-Pérot resonators with photonic circuits. APL Photonics 8 , 116105 (2023)..
Yu, Q. H. et al. Heterogeneousphotodiodes on silicon nitride waveguides. Opt. Express 28 , 14824–14830 (2020)..
Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373 , 99–103 (2021)..
Liu, J. Q. et al. Monolithic piezoelectric control of soliton microcombs. Nature 583 , 385–390 (2020)..
Snigirev, V. et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615 , 411–417 (2023)..
Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photonics 15 , 516–522 (2021)..
Wang, B. C. et al. Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light Sci. Appl. 10 , 4 (2021)..
Gorodetsky, M. L., Pryamikov, A. D. & Ilchenko, V. S. Rayleigh scattering in high- Q microspheres. J. Optical Soc. Am. B 17 , 1051–1057 (2000)..
Li, Q., Eftekhar, A. A., Xia, Z. & Adibi, A. Unified approach to mode splitting and scattering loss in high- Q whispering-gallery-mode microresonators. Phys. Rev. A 88 , 033816 (2013)..
Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85 , 74–77 (2000)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution