无数据
1.Department of Physics, Hanyang University, Seoul 133-791, South Korea
2.Convergence Technology Division, Korea Advanced Nano Fab Center, Suwon 16229, South Korea
3.Joint Quantum Institute, University of Maryland, College Park, MD 20742, USA
Jae Woong Yoon (yoonjw@hanyang.ac.kr)
Received:13 September 2024,
Revised:20 February 2025,
Accepted:20 February 2025,
Published Online:13 March 2025,
Published:31 May 2025
Scan QR Code
Choi, Y. S. et al. Topological beaming of light: proof-of-concept experiment. Light: Science & Applications, 14, 1256-1264 (2025).
Choi, Y. S. et al. Topological beaming of light: proof-of-concept experiment. Light: Science & Applications, 14, 1256-1264 (2025). DOI: 10.1038/s41377-025-01799-w.
Beam shaping in nanophotonic systems remains a challenge due to the reliance on complex heuristic optimization procedures. In this work
we experimentally demonstrate a novel approach to topological beam shaping using Jackiw-Rebbi states in metasurfaces. By fabricating thin-film dielectric structures with engineered Dirac-mass distributions
we create domain walls that allow precise control over beam profiles. We observe the emergence of Jackiw-Rebbi states and confirm their localized characteristics. Notably
we achieve a flat-top beam profile by carefully tailoring the Dirac-mass distribution
highlighting the potential of this method for customized beam shaping. This experimental realization establishes our approach as a new mechanism for beam control
rooted in topological physics
and offers an efficient strategy for nanophotonic design.
Nie, J. W.et al. Adaptive beam shaping for enhanced underwater wireless optical communication. Opt. Express 29 , 26404–26417 (2021)..
Lu, Z. H. et al. Tunable Bessel beam shaping for robust atmospheric optical communication. J. Light. Technol. 40 , 5097–5106 (2022)..
Ren, W. B. et al. Free-space beam shaping and steering based on a silicon optical phased array. Photonics Res. 11 , 2093–2099 (2023)..
Duocastella, M. & Arnold, C. B. Bessel and annular beams for materials processing. Laser Photonics Rev. 6 , 607–621 (2012)..
Zupancic, P. et al. Ultra-precise holographic beam shaping for microscopic quantum control. Opt. Express 24 , 13881–13893 (2016)..
Shealy, D. L. & Hoffnagle, J. A. Laser beam shaping profiles and propagation. Appl. Opt. 45 , 5118–5131 (2006)..
Koyama, F. & Gu, X. D. Beam steering, beam shaping, and intensity modulation based on VCSEL photonics. IEEE J. Sel. Top. Quantum Electron. 19 , 1701510 (2013)..
Xue, Z. W. et al. Actively compensation of low order aberrations by refractive shaping system for high power slab lasers. Opt. Laser Technol. 75 , 71–75 (2015)..
Kalyoncu, S. K. et al. Analytical study on arbitrary waveform generation by MEMS micro mirror arrays. Opt. Express 20 , 27542–27553 (2012)..
Tan, L. Y. et al. Approach to improve beam quality of inter-satellite optical communication system based on diffractive optical elements. Opt. Express 17 , 6311–6319 (2009)..
Lee, S. et al. Geometric-phase intraocular lenses with multifocality. Light Sci. Appl. 11 , 320 (2022)..
Katz, S., Kaplan, N. & Grossinger, I. Using diffractive optical elements: DOEs for beam shaping–fundamentals and applications. Opt. Photonik 13 , 83–86 (2018)..
Qu, W. D. et al. Precise design of two-dimensional diffractive optical elements for beam shaping. Appl. Opt. 54 , 6521–6525 (2015)..
Johansson, M. & Bengtsson, J. Robust design method for highly efficient beam-shapingdiffractive optical elements using an iterative-Fourier-transform algorithm with soft operations. J. Mod. Opt. 47 , 1385–1398 (2000)..
Li, S. S. et al. High-quality near-field beam achieved in a high-power laser based on SLM adaptive beam-shaping system. Opt. Express 23 , 681–689 (2015)..
Ackermann, L., Roider, C. & Schmidt, M. Uniform and ef ficient beam shaping for high-energy lasers. Opt. Express 29 , 17997–18009 (2021)..
Salter, P. S. et al. Adaptive slit beam shaping for direct laser written waveguides. Opt. Lett. 37 , 470–472 (2012)..
Hasan, M. Z. & Kane, C. L. Colloquium : topological insulators. Rev. Mod. Phys. 82 , 3045–3067 (2010)..
Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83 , 1057–1110 (2011)..
Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn. 82 , 102001 (2013)..
Hasan, M. Z. & Moore, J. E. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys. 2 , 55–78 (2011)..
Jackiw, R. & Rebbi, C. Solitons with fermion number. Phys. Rev. D. 13 , 3398–3409 (1976)..
Shen, S. Q. Topological Insulators: Dirac Equation in Condensed Matters (Springer, 2012).
Asbóth, J. K., Oroszlány, L. & Pályi, A. A Short Course on Topological Insulators (Springer, 2016).
Lee, K. Y. et al. Topological guided-mode resonances at non-Hermitian nanophotonic interfaces. Nanophotonics 10 , 1853–1860 (2021)..
An, S. C. et al. Topological exciton polaritons in compact perovskite junction metasurfaces. Adv. Funct. Mater. 34 , 2313840 (2024)..
Choi, Y. S., Lee, K. Y. & Yoon, J. W. Topological surface Plasmon resonance in deep subwavelength structure. Curr. Appl. Phys. 45 , 72–75 (2023)..
Gorlach, A. A. et al. Photonic Jackiw-Rebbi states in all-dielectric structures controlled by bianisotropy. Phys. Rev. B 99 , 205122 (2019)..
Gupta, N. K. et al. Realization of Jackiw–Rebbi zero-energy modes at photonic crystal domain walls: emergence of polarization-indiscriminate surface states. Appl. Phys. Lett. 124 , 091104 (2024)..
Kim, M. & Rho, J. Quantum Hall phase and chiral edge states simulated by a coupled dipole method. Phys. Rev. B 101 , 195105 (2020)..
Li, F. F. et al. Topological light-trapping on a dislocation. Nat. Commun. 9 , 2462 (2018)..
Slobozhanyuk, A. et al. Three-dimensional all-dielectric photonic topological insulator. Nat. Photonics 11 , 130–136 (2017)..
Tran, T. X. & Biancalana, F. Linear and nonlinear photonic Jackiw-Rebbi states in interfaced binary waveguide arrays. Phys. Rev. A 96 , 013831 (2017)..
Chen, K. et al. Photonic Dirac cavities with spatially varying mass term. Sci. Adv. 9 , eabq4243 (2023)..
Lee, K. Y. et al. Topological beaming of light. Sci. Adv. 8 , eadd8349 (2022)..
Kane, C. L. Topological band theory and the $$ {{\mathbb{Z}}_{2}}$$ invariant. Contemp. Concepts Condens. Matter Sci. 6 , 3–34 (2013)..
Schindler, F. Dirac equation perspective on higher-order topological insulators. J. Appl. Phys. 128 , 221102 (2020)..
Lee, S. G. & Magnusson, R. Band flips and bound-state transitions in leaky-mode photonic lattices. Phys. Rev. B 99 , 045304 (2019)..
Kazarinov, R. & Henry, C. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE J. Quantum Electron. 21 , 144–150 (1985)..
Rosenblatt, D., Sharon, A. & Friesem, A. A. Resonant grating waveguide structures. IEEE J. Quantum Electron. 33 , 2038–2059 (1997)..
Ding, Y. & Magnusson, R. Band gaps and leaky-wave effects in resonant photonic-crystal waveguides. Opt. Express 15 , 680–694 (2007)..
Yoshida, M. et al. High-brightness scalable continuous-wave single-mode photonic-crystal laser. Nature 618 , 727–732 (2023)..
Contractor, R. et al. Scalable single-mode surface-emitting laser via open-Dirac singularities. Nature 608 , 692–698 (2022)..
Shao, Z. K. et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15 , 67–72 (2020)..
Vakulenko, A. et al. Adiabatic topological photonic interfaces. Nat. Commun. 14 , 4629 (2023)..
Park, C. Y. et al. Compact coherent perfect absorbers using topological guided-mode resonances. Sci. Rep. 14 , 14144 (2024)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution