无数据
1.Key Laboratory of Photonic Information Technology (Ministry of Industry and Information Technology), School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
2.School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
3.Photonics Research Center, Guilin University of Electronics Technology, Guilin, China
4.Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
5.Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
Tijmen G. Euser (te287@cam.ac.uk)
Libo Yuan (lbyuan@guet.edu.cn)
Ningfang Song (songnf@buaa.edu.cn)
Shangran Xie (sxie@bit.edu.cn)
Received:27 August 2024,
Revised:07 February 2025,
Accepted:2025-02-25,
Published Online:31 March 2025,
Published:30 April 2025
Scan QR Code
Wang, R. et al. Optical trapping of mesoscale particles and atoms in hollow-core optical fibers: principle and applications. Light: Science & Applications, 14, 902-924 (2025).
Wang, R. et al. Optical trapping of mesoscale particles and atoms in hollow-core optical fibers: principle and applications. Light: Science & Applications, 14, 902-924 (2025). DOI: 10.1038/s41377-025-01801-5.
Hollow-core fiber (HCF) is a special optical waveguide type that can guide light in the air or liquid core surrounded by properly designed cladding structures. The guiding modes of the fiber can generate sufficient optical gradient forces to balance the gravity of the particles or confine the atom clouds
forming a stable optical trap in the hollow core. The levitated objects can be propelled over the fiber length along the beam axis through an imbalance of the optical scattering forces or by forming an optical lattice by the counter-propagating beams. The ability to overcome the diffraction of the laser beam in HCF can significantly increase the range of the optical manipulation compared with standard free-space optical tweezers
opening up vast ranges of applications that require long-distance optical control. Since the first demonstration of optical trapping in HCF
hollow-core-fiber-based optical trap (HCF-OT) has become an essential branch of optical tweezer that draws intense research interests. Fast progress on the fundamental principle and applied aspects of HCF-OT has been visible over the past two decades. In recent years
significant milestones in reducing the propagation loss of HCF have been achieved
making HCF an attractive topic in the field of optics and photonics. This further promotes the research and applications of HCF-OT. This review starts from the mechanism of light guidance of HCF
mainly focusing on the issues related to the optical trap in the hollow core. The basic principles and key features of HCF-OT
from optical levitation to manipulation and the detection of macroscopic particles and atoms
are summarized in detail. The key applications of HCF-OT
the challenges and future directions of the technique are also discussed.
Moffitt, J. R. et al. Recent advances in optical tweezers. Annu. Rev. Biochem. 77 , 205–228 (2008)..
Gieseler, J. et al. Optical tweezers—from calibration to applications: a tutorial. Adv. Opt. Photonics 13 , 74–241 (2021)..
Volpe, G. et al. Roadmap for optical tweezers. J. Phys.: Photonics 5 , 022501 (2023)..
Zhang, Y. Q. et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci. Appl. 10 , 59 (2021)..
Neukirch, L. P. et al. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nat. Photonics 9 , 653–657 (2015)..
Xie, S. R. et al. Tumbling and anomalous alignment of optically levitated anisot ropic microparticles in chiral hollow-core photonic crystal fiber. Sci. Adv. 7 , eabf6053 (2021)..
Pontin, A. et al. Simultaneous cavity cooling of all six degrees of freedom of a levitated nanoparticle. Nat. Phys. 19 , 1003–1008 (2023)..
Friese, M. E. J. et al. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394 , 348–350 (1998)..
Arita, Y., Mazilu, M. & Dholakia, K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4 , 2374 (2013)..
Brouhard, G. J., Schek, H. T. & Hunt, A. J. Advanced optical tweezers for the study of cellular and molecular biomechanics. IEEE Trans. Biomed. Eng. 50 , 121–125 (2003)..
Hopkins, R. J. et al. Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap. Phys. Chem. Chem. Phys. 6 , 4924–4927 (2004)..
Polimeno, P. et al. Optical twe ezers and their applications. J. Quant. Spectrosc. Radiat. Transf. 218 , 131–150 (2018)..
Ashkin, A. et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11 , 288–290 (1986)..
Chu, S. et al. Experimental observation of optically trapped atoms. Phys. Rev. Lett. 57 , 314–317 (1986)..
Ranjit, G. et al. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum. Phys. Rev. A 91 , 051805 (2015)..
Lincoln, B. et al. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomed. Microdevices 9 , 703–710 (2007)..
Visscher, K., Gross, S. P. & Block, S. M. Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J. Sel. Top. Quantum Electron. 2 , 1066–1076 (1996)..
Sidick, E., Collins, S. D. & Knoesen, A. Trapping force s in a multiple-beam fiber-optic trap. Appl. Opt. 36 , 6423–6433 (1997)..
Kawata, S. & Sugiura, T. Movement of micrometer-sized particles in the evanescent field of a laser beam. Opt. Lett. 17 , 772–774 (1992)..
Erickson, D. et al. Nanomanipulation using near field photonics. Lab Chip. 11 , 995–1009 (2011)..
Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nat. Photonics 5 , 349–356 (2011)..
Yang, A. H. J. et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457 , 71–75 (2009)..
Vetsch, E. et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104 , 203603 (2010)..
Brambilla, G. et al. Optical manipulation of microspheres along a subwavelength optical wire. Opt. Lett. 32 , 3041–3043 (2007)..
Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers. Opt. Commun. 207 , 169–175 (2002)..
Leach, J. et al. 3D manipulation of particles into crystal structures using holographic optical tweezers. Opt. Express 12 , 220–226 (2004)..
Dufresne, E. R. et al. Computer-generated holographic optical tweezer arrays. Rev. Sci. Instrum. 72 , 1810–1816 (2001)..
Lou, Y. H., Wu, D. & Pang, Y. J. Optical trapping and manipulation using optical fibers. Adv. Fiber Mater. 1 , 83–100 (2019)..
Guck, J. et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81 , 767–784 (2001)..
Leite, I. T. et al. Three-dimensional holographicoptical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat. Photonics 12 , 33–39 (2018)..
Zhang, Y. et al. Optical fiber tweezers: from fabrication to applications. Opt. Laser Technol. 175 , 110681 (2024)..
Li, T. C. et al. Measurement of the instantaneous velocity of a brownian particle. Science 328 , 1673–1675 (2010)..
Frye, K. et al. The bose-einstein condensate and cold atom laboratory. EPJ Quantum Technol. 8 , 1 (2021)..
Ricci, F. et al. Optically levitated nanoparticle as a model system for stochastic bistable dynamics. Nat. Commun. 8 , 15141 (2017)..
Rondin, L. et al. Direct measurement of Kramers turnover with a levitated nanoparticle. Nat. Nanotechnol. 12 , 1130–1133 (2017)..
Fonseca, P. Z. G. et al. Nonlinear dynamics and strong cavity cooling of levitated nanoparticles. Phys. Rev. Lett. 117 , 173602 (2016)..
Gieseler, J. et al. Dynamic relaxation o f a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol. 9 , 358–364 (2014)..
Gieseler, J. & Millen, J. Levitated nanoparticles for microscopic thermodynamics—a review. Entropy 20 , 326 (2018)..
Kaufman, A. M. & Ni, K. -K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 17 , 1324–1333 (2021)..
Timberlake, C. et al. Acceleration sensing with magnetically levitated oscillators above a superconductor. Appl. Phys. Lett. 115 , 224101 (2019)..
Hebestreit, E. et al. Sensing static forces with free-falling nanoparticles. Phys. Rev. Lett. 121 , 063602 (2018)..
Ahn, J. et al. Ultrasensitive torque detection with an optically levitated nanorotor. Nat. Nanotechnol. 15 , 89–93 (2020)..
Yao, A. et al. Microrheology with optical tweezers. Lab Chip 9 , 2568–2575 (2009)..
Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330 , 769–771 (1987)..
Ebert, S. et al. Fluorescence ratio thermometry in a microfluidic dual-beam laser trap. Opt. Express 15 , 15493–15499 (2007)..
Heller, I. et al. Optical tweezers analysis of DNA–protein complexes. Chem. Rev. 114 , 3087–3119 (2014)..
Lenton, I. C. D. et al. Optical tweezers exploring neuroscience. Front. Bioeng. Biotechnol. 8 , 602797 (2020)..
Ashok, P. C. & Dholakia, K. Optical trapping for analytical biotechnology. Curr. Opin. Biotechnol. 23 , 16–21 (2012)..
Grier, D. G. Optical tweezers in colloid and interface science. Curr. Opin. Colloid Interface Sci. 2 , 264–270 (1997)..
Reich, O. et al. Weighing picogram aerosol droplets with an optical balance. Commun. Phys. 3 , 223 (2020)..
Hill, R. J. A. & Eaves, L. Nonaxisymmetric shapes of a magnetically levitated and spinning water droplet. Phys. Rev. Lett. 101 , 234501 (2008)..
Gonzalez-Ballestero, C. et al. Levitodynamics: Levitation and control of microscopic objects in vacuum. Science 374 , eabg3027 (2021)..
Kiesel, N. et al. Cavity cooling of an optically levitated submicron particle. Proc. Natl Acad. Sci. USA 110 , 14180–14185 (2013)..
Gieseler, J. et al. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109 , 103603 (2012)..
Jain, V. et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 116 , 243601 (2016)..
Li, T. C., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an opticall y trapped microsphere in vacuum. Nat. Phys. 7 , 527–530 (2011)..
Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367 , 892–895 (2020)..
Magrini, L. et al. Real-time optimal quantum control of mechanical motion at room temperature. Nature 595 , 373–377 (2021)..
Tebbenjohanns, F. et al. Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature 595 , 378–382 (2021)..
Rieser, J. et al. Tunable light-induced dipole-dipole interaction between optically levitated nanoparticles. Science 377 , 987–990 (2022)..
Svak, V. et al. Stochastic dynamics of optically bound matter levitated in vacuum. Optica 8 , 220–229 (2021)..
Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285 , 1537–1539 (1999)..
Russell, P. S. J. et al. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photonics 8 , 278–286 (2014)..
Safaei, R. et al. High-energy multidimensional solitary states in hollow-core fibres. Nat. Photonics 14 , 733–739 (2020)..
Benabid, F. et al. Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298 , 399–402 (2002)..
Benabid, F. et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434 , 488–491 (2005)..
Couny, F. et al. Generation and photonic guidance of multi-octave optical-frequency combs. Science 318 , 1118–1121 (2007)..
Alia, O. et al. DV-QKD coexistence with 1.6 Tbps classical channels over hollow core fibre. J. Lightwave Technol. 40 , 5522–5529 (2022)..
Tyumenev, R. et al. Tunable and state-preserving frequency conversion of single photons in hydrogen. Science 376 , 621–624 (2022)..
Xin, M. J. et al. An atom interferometer inside a hollow-core photonic crystal fiber. Sci. Adv. 4 , e1701723 (2018)..
Bykov, D. S. et al. Flying particle sensors in hollow-core photonic crystal fibre. Nat. Photonics 9 , 461–465 (2015)..
Yang, F., Gyger, F. & Thévenaz, L. Intense Brillouin amplification in gas using hollow-core waveguides. Nat. Photonics 14 , 700–708 (2020)..
Jin, W. et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun. 6 , 6767 (2015)..
Zhao, P. C. et al. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber. Nat. Commun. 11 , 847 (2020)..
Sanders, G. A. et al. Hollow-core r esonator fiber optic gyroscope using nodeless anti-resonant fiber. Opt. Lett. 46 , 46–49 (2021)..
Zhu, Y. H. et al. Single-polarization single-mode hollow-core photonic-bandgap fiber with thin slab waveguide. Opt. Express 29 , 30371–30383 (2021)..
Zhang, L. et al. A diaphragm-free fiber Fabry-Perot gas pressure sensor. Rev. Sci. Instrum. 90 , 025005 (2019)..
Ni, W. J. et al. Recent advancement of anti-resonant hollow-core fibers for sensing applications. Photonics 8 , 128 (2021)..
Travers, J. C. et al. Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers. J. Opt. Soc. Am. B 28 , A11–A26 (2011)..
Zeltner, R. et al. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber. Appl. Phys. Lett. 108 , 231107 (2016)..
Euser, T. G. et al. Laser propulsion of microparticles in hollow-core photonic crystal f iber: a review of recent developments. In Proc. IEEE 3rd International Conference on Photonics. Pulau Pinang, Malaysia: IEEE , 316–317 (2012).
Lindner, S. et al. Hollow-core fiber loading of nanoparticles into ultra-high vacuum. Appl. Phys. Lett. 124 , 143501 (2024)..
Bykov, D. S. et al. Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre. Light Sci. Appl. 7 , 22 (2018)..
Sharma, A., Xie, S. R. & Russell, P. S. J. Reconfigurable millimeter-range optical binding of dielectric microparticles in hollow-core photonic crystal fiber. Opt. Lett. 46 , 3909–3912 (2021)..
Xie, S. R., Pennetta, R. & Russell, P. S. J. Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber. Optica 3 , 277–282 (2016)..
Renn, M. J. et al. Laser-guided atoms in hollow-core optical fibers. Phys. Rev. Lett. 75 , 3253–3256 (1995)..
Benabid, F., Knight, J. C. & Russell, P. S. J. Particle levitation and guidance in hollow-core photonic crystal fiber. Opt. Express 10 , 1195–1203 (2002)..
Renn, M. J., Pastel, R. & Lewandowski, H. J. Laser guidance and trapping of mesoscale particles in hollow-core optical fibers. Phys. Rev. Lett. 82 , 1574–1577 (1999)..
Grass, D. et al. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers. Appl. Phys. Lett. 108 , 221103 (2016)..
Rajapakse, C. et al. Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber. Opt. Express 20 , 11232–11240 (2012)..
Horstmann, M., Probst, K. & Fallnich, C. An integrated fiber-based optical trap for single airborne particles. Appl. Phys. B 103 , 35–39 (2011)..
Kincaid, P. S. et al. Size-dependent optical forces on dielectric microspheres in hollow core photonic crystal fibers. Opt. Express 30 , 24407–24420 (2022)..
Song, Y. T. et al. Suppressing the dephasing of optically trapped atoms inside a hollow-core fiber. Opt. Lett. 49 , 206–209 (2024)..
Wang, R. et al. Non-markovian doppler velocimetry of optically propelled microparticles in hollow-core photonic crystal fiber. ACS Photonics 11 , 1533–1539 (2024)..
Zhang, Y. et al. HACF-based optical tweezers available for living cells manipulating and sterile transporting. Opt. Commun. 427 , 563–566 (2018)..
Marcatili, E. A. J. & Schmeltzer, R. A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J. 43 , 1783–1809 (1964)..
Russell, P. S. J. Photonic-Crystal Fibers. J. Lightwave Technol. 24 , 4729–4749 (2006)..
Numkam Fokoua, E. et al. Loss in hollow-core optical fibers: mechanisms, scaling rules, and limits. Adv. Opt. Photonics 15 , 1–85 (2023)..
Benabid, F. & Roberts, P. J. Linear and nonlinear optical properties of hollow core photonic crystal fiber. J. Mod. Opt. 58 , 87–124 (2011)..
Russell, P. Photonic crystal fibers: a historical account. IEEE Leos Newsl. 21 , 11–15 (2007)..
Gérôme, F. et al. Simplified hollow-core photonic crystal fiber. Opt. Lett. 35 , 1157–1159 (2010)..
Février, S., Beaudou, B. & Viale, P. Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification. Opt. Express 18 , 5142–5150 (2010)..
Kolyadin, A. N. et al. Light transmission in negative curvature hollow core fiber in extremely high material loss region. Opt. Express 21 , 9514–9519 (2013)..
Hayes, J. R. et al. Anti-resonant hexagram hollow core fibers. Opt. Express 23 , 1289–1299 (2015)..
Buffolo, M. e t al. Degradation of 1.3 μm InAs quantum-dot laser diodes: impact of dislocation density and number of quantum dot layers. IEEE J. Quantum Electron. 57 , 2000108 (2021)..
Yu, F. & Knight, J. C. Negative curvature hollow-core optical fiber. IEEE J. Sel. Top. Quantum Electron. 22 , 4400610 (2016)..
Wei, C. L. et al. Negative curvature fibers. Adv. Opt. Photonics 9 , 504–561 (2017)..
Chen, Y. et al. Hollow core DNANF optical fiber with < 0.11 dB/km loss. In Proc. Optical Fiber Communication Conference (OFC) . San Diego, California, USA: OFC, Th4A.8, (2024)
Ruskuc, A. et al. Excitation of higher-order modes in optofluidic photonic crystal fiber. Opt. Express 26 , 30245–30254 (2018)..
Euser, T. G. et al. Dynamic control of higher-order modes in hollow-core photonic crystal fibers. Opt. Express 16 , 17972–17981 (2008)..
Trabold, B. M. et al. Selective excitation of higher order modes in hollow-core PCF via prism-coupling. Opt. Lett. 39 , 3736–3739 (2014)..
Li, K. et al. Capture dynamics of dielectric microparticles in hollow-core-fiber-based optical Traps. Photonics 10 , 1154 (2023)..
Borghese, F. et al. Optical trapping of nonspherical particles in the T-matrix formalism. Opt. Express 15 , 11984–11998 (2007)..
Yurkin, M. A. & Hoekstra, A. G. The discrete dipole approximation: an overview and recent developments. J. Quant. Spectrosc. Radiat. Transf. 106 , 558–589 (2007)..
Gauthier, R. C. Computation of the optical trapping force using an FDTD based technique. Opt. Express 13 , 3707–3718 (2005)..
Moreira, W. L. et al. Expansion of arbitrary electromagnetic fields in terms of vector spherical wave functions. Opt. Express 24 , 2370–2382 (2016)..
Ashkin, A. & Dziedzic, J. M. Observation of resonances in the radi ation pressure on dielectric spheres. Phys. Rev. Lett. 38 , 1351–1354 (1977)..
Ashkin, A. & Dziedzic, J. M. Observation of optical resonances of dielectric spheres by light scattering. Appl. Opt. 20 , 1803–1814 (1981)..
Schmidt, O. A., Euser, T. G. & Russell, P. S. J. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber. Opt. Express 21 , 29383–29391 (2013)..
Balykin, V. I., Minogin, V. G. & Letokhov, V. S. Electromagnetic trapping of cold atoms. Rep. Prog. Phys. 63 , 1429–1510 (2000)..
Cristiani, I. et al. Roadmap on multimode photonics. J. Opt. 24 , 083001 (2022)..
Roth, P. et al. Strong circular dichroism for the HE11 mode in twisted single-ring hollow-core photonic crystal fiber. Optica 5 , 1315–1321 (2018)..
Horstmann, M., Probst, K. & Fallnich, C. Towards an integrated optical single aerosol particle lab. Lab a Chip 12 , 295–301 (2012)..
Summers, M. D., Burnham, D. R. & McGloin, D. Trapping solid aerosols with optical tweezers: a comparison between gas and liquid phase optical traps. Opt. Express 16 , 7739–7747 (2008)..
Schmidt, O. A. et al. Metrology of laser-guided particles in air-filled hollow-core photonic crystal fiber. Opt. Lett. 37 , 91–93 (2012)..
Werzinger, S. et al. High resolution position measurement of "flying particles" inside hollow-core photonic crystal fiber. In Proc. 2017 IEEE SENSORS. Glasgow, UK: IEEE , 1–3 (2017).
Garbos, M. K. et al. Doppler velocimetry on microparticles trapped and propelled by laser light in liquid-filled photonic crystal fiber. Opt. Lett. 36 , 2020–2022 (2011)..
Hilton, A. P. et al. High-efficiency cold-atom transport into a waveguide trap. Phys. Rev. Appl. 10 , 044034 (2018)..
Peters, T., Yatsenko, L. P. & Halfman n, T. Loading and spatially resolved characterization of a cold atomic ensemble inside a hollow-core fiber. Phys. Rev. A 103 , 063302 (2021)..
Bajcsy, M. et al. Laser-cooled atoms inside a hollow-core photonic-crystal fiber. Phys. Rev. A 83 , 063830 (2011)..
Xin, M. J. et al. Transporting long-lived quantum spin coherence in a photonic crystal fiber. Phys. Rev. Lett. 122 , 163901 (2019)..
Vorrath, S. et al. Efficient guiding of cold atoms through a photonic band gap fiber. N. J. Phys. 12 , 123015 (2010)..
Okaba, S. et al. Lamb-dicke spectroscopy of atoms in a hollow-core photonic crystal fibre. Nat. Commun. 5 , 4096 (2014)..
Burns, M. M., Fournier, J. M. & Golovchenko, J. A. Optical matter: crystallization and binding in intense optical fields. Science 249 , 749–754 (1990)..
Reicherter, M. et al. Optical particle trapping with computer-generated hologr ams written on a liquid-crystal display. Opt. Lett. 24 , 608–610 (1999)..
Karásek, V. et al. Long-range one-dimensional longitudinal optical binding. Phys. Rev. Lett. 101 , 143601 (2008)..
Maimaiti, A. et al. Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes. Sci. Rep. 6 , 30131 (2016)..
Ghosh, S. et al. Low-light-level opticalinteractions with rubidium vapor in a photonic band-gap fiber. Phys. Rev. Lett. 97 , 023603 (2006)..
Epple, G. et al. Rydberg atoms in hollow-core photonic crystal fibres. Nat. Commun. 5 , 4132 (2014)..
Epple, G. et al. Effect of stray fields on Rydberg states in hollow-core PCF probed by higher-order modes. Opt. Lett. 42 , 3271–3274 (2017)..
Veit, C. et al. RF-dressed Rydberg atoms in hollow-core fibres. J. Phys. B: At., Mol. Optical Phys. 49 , 134005 (2016)..
Leong, W. S. et al. Long light storage time in an optical fiber. Phys. Rev. Res. 2 , 033320 (2020)..
Li, W., Islam, P. & Windpassinger, P. Controlled transport of stored light. Phys. Rev. Lett. 125 , 150501 (2020)..
Peters, T. et al. Single-photon-level narrowband memory in a hollow-core photonic bandgap fiber. Opt. Express 28 , 5340–5354 (2020)..
Blatt, F. et al. Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber. Phys. Rev. A 94 , 043833 (2016)..
Zeltner, R. et al. Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber. Opt. Lett. 43 , 1479–1482 (2018)..
Koeppel, M. et al. Doppler optical frequency domain reflectometry for remote fiber sensing. Opt. Express 29 , 14615–14629 (2021)..
Kincaid, P. S. & Porcelli, A. Hollow core photonic crystal fibers for temperature measurement in hydrogen combustors. In Proc. 27th International Congress on Sound and Vibration. ICSV (2021).
Chakraborty, S. et al. Optomagnetic forces on YIG/YFeO3 microspheres levitated in chiral hollow-core photonic crystal fibre. arXiv https://arxiv.org/abs/2404.16182 https://arxiv.org/abs/2404.16182 (2024)..
Wachter, V. et al. Optical signatures of the coupled spin-mechanics of a levitated magnetic microparticle. J. Optical Soc. Am. B 38 , 3858–3871 (2021)..
Rademacher, M. etal. Measurement of single nanoparticle anisotropy by laser induced optical alignment and Rayleigh scattering for determining particle morphology. Appl. Phys. Lett. 121 , 221102 (2022)..
Ricci, F. et al. A chemical nanoreactor based on a levitated nanoparticle in vacuum. ACS Nano 16 , 8677–8683 (2022)..
Sun, J. W. et al. AI-driven projection tomography with multicore fibre-optic cell rotation. Nat. Commun. 15 , 147 (2024)..
Zhang, H. & Liu, K. K. Optical tweezers for single cells. J. R. Soc. Interface 5 , 671–690 (2008)..
Arbore, C. et al. Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction. Biophys. Rev. 11 , 765–782 (2019)..
Gordon, R. Biosensing with nanoaperture optical tweezers. Opt. Laser Technol. 109 , 328–335 (2019)..
Cao, X. et al. Directly measuring Fe(iii)-catalyzed SO2 oxidation rate in single optically levitated droplets. Environ. Sci.: Atmos. 3 , 298–304 (2023)..
Gillibert, R. et al. Raman tweezers for small microplastics and nanoplasticsidentification in seawater. Environ. Sci. Technol. 53 , 9003–9013 (2019)..
Gillibert, R. et al. Raman tweezers for tire and road wear micro - and nanoparticles analysis. Environ. Sci.: Nano 9 , 145–161 (2022)..
Bankapur, A. et al. Raman tweezers spectroscopy of live, single red and white blood cells. PLoS One 5 , e10427 (2010)..
Snook, R. D. et al. Raman tweezers and their application to the study of singly trapped eukaryotic cells. Integr. Biol. 1 , 43–52 (2009)..
Sharma, A. et al. On-the-fly particle metrology in hollow-core photonic crystal fibre. Opt. Express 27 , 34496–34504 (2019)..
Unterkofler, S. et al. Long-distance laser propulsion and deformation- monitoring of cells in optofluidic photonic crystal fiber. J. Biophotonics 6 , 743–752 (2013)..
Skalak, R. & Brånemark, P. I. Deformation of red blood cells in capillaries. Science 164 , 717–719 (1969)..
Deng, H. C. et al. Fiber-integrated optical tweezers for ballistic transport and trapping yeast cells. Nanoscale 14 , 6941–6948(2022)..
Ahn, J. et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett. 121 , 033603 (2018)..
Reimann, R. et al. GHz rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett. 121 , 033602 (2018)..
Jin, Y. et al. 6 GHz hyperfast rotation of an optically levitated nanoparticle in vacuum. Photonics Res. 9 , 1344–1350 (2021)..
Bang, J. et al. Five-dimensional cooling and nonlinear dynamics of an optically levitated nanodumbbell. Phys. Rev. Res. 2 , 043054 (2020)..
van der Laan, F. et al. Observation of radiation torque shot noise on an optically levitated nanodumbbell. arXiv https://arxiv.org/abs/2012.14231 https://arxiv.org/abs/2012.14231 (2020)..
Rashid, M. et al. Precession motion in levitated optomechanics. Phys. Rev. Lett. 121 , 253601 (2018)..
Song, Y. T. et al. Tightly trapped atom interferometer inside a hollow-core fiber. Photonics 11 , 428 (2024)..
Wang, Y. et al. Enhancing fiber atom interferometer by in-fiber laser cooling. Phys. Rev. Res. 4 , L022058 (2022)..
Liška, V. et al. PT-like phase transition and limit cycle oscillations in non-reciprocally coupled optomechanical oscillators levitated in vacuum. Nat. Phys. 20 , 1622–1628 (2024)..
Reisenbauer, M. et al. Non-hermitian dynamics and non-reciprocity of optically coupled nanoparticles. Nat. Phys. 20 , 1629–1635 (2024)..
Fein, Y. Y. et al. Quantum superposition of molecules beyond 25 kDa. Nat. Phys. 15 , 1242–1245 (2019)..
Toroš, M., Bose, S. & Barker, P. F. Creating atom-nanoparticle quantum superpositions. Phys. Rev. Res. 3 , 033218 (2021)..
Ermolov, A. et al. Low loss hollow optical-waveguide connection from atmospheric pressure to ultra-high vacuum. Appl. Phys. Lett. 103 , 261115 (2013)..
Pennetta, R. et al. Fabrication and non-destructive characterization of tapered single-ring hollow-core photonic crystal fiber. APL Photonics 4 , 056105 (2019)..
Smith, C. M. et al. Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424 , 657–659 (2003)..
Mangan, B. J. et al. Low loss (1.7 dB/km) hollow core photonic bandgap fiber. In Proc. of Optical Fiber Communication Conference. Los Angeles, CA, USA: IEEE, 3 (2004).
Frosz, M. H. et al. Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss. Opt. Lett. 38 , 2215–2217 (2013)..
Chen, X. et al. Highly birefringent hollow-core photonic bandgap fiber. Opt. Express 12 , 3888–3893 (2004)..
Poletti, F. et al. Towards high-capacity fibre-optic communications at the speed of light in vacuum. Nat. Photonics 7 , 279–284 (2013)..
Fini, J. M. et al. Polarization maintaining single-mode low-loss hollow-core fibres. Nat. Commun. 5 , 5085 (2014)..
Wheeler, N. V. et al. Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber. Opt. Lett. 39 , 295–298 (2014)..
Xu, X. B. et al. Investigation of longitudinal uniformity of the core structure in a hollow-core photonic bandgap fiber. Opt. Express 29 , 37534–37540 (2021)..
Wang, Y. Y. et al. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Opt. Lett. 36 , 669–671 (2011)..
Pryamikov, A. D. et al. Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm. Opt. Express 19 , 1441–1448 (2011)..
Yu, F., Wadsworth, W. J. & Knight, J. C. Low loss silica hollow core fibers for 3–4 μm spectral region. Opt. Express 20 , 11153–11158 (2012)..
Uebel, P. et al. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes. Opt. Lett. 41 , 1961–1964 (2016)..
Nawazuddin, M. B. S. et al. Lotus-shaped negative curvature hollow core fiber with 10.5 dB/km at 1550 nm wavelength. J. Lightwave Technol. 36 , 1213–1219 (2018)..
Gao, S. F. et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss. Nat. Commun. 9 , 2828 (2018)..
Kosolapov, A. F. et al. Hollow-core revolver fibre with a double-capillary reflective cladding. Quantum Electron. 46 , 267–270 (2016)..
Sakr, H. et al. Hollow core NANFs with five nested tubes and record low loss at 850, 1060, 1300 and 1625 nm. In Proc. 2021 Optical Fiber Communications Conference and Exhibition (OFC). San Francisco, CA, USA: IEEE, 1-3 (2021).
Jasion, G. T. et al. 0.174 dB/km hollow core double nested antiresonant nodeless fiber (DNANF). In Proc. 2022 Optical Fiber Communications Conference and Exhibition (OFC) . San Diego, CA, USA: IEEE, 1–3 (2022).
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution