无数据
1.CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2.CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3.Anhui Province Key Laboratory of Quantum Network, University of Science and Technology of China, Hefei 230026 Anhui, China
4.Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Jin-Shi Xu (jsxu@ustc.edu.cn)
Chuan-Feng Li (cfli@ustc.edu.cn)
Published Online:27 March 2025,
Published:31 May 2025
Scan QR Code
Sun, K., Xu, J. S. & Li, C. F. Universal conservation law governing the wave–particle duality and quantum entanglement. Light: Science & Applications, 14, 1177-1178 (2025).
Sun, K., Xu, J. S. & Li, C. F. Universal conservation law governing the wave–particle duality and quantum entanglement. Light: Science & Applications, 14, 1177-1178 (2025). DOI: 10.1038/s41377-025-01804-2.
Universal conservation laws of wave–particle–entanglement triad
which describe relations between the wave–particle duality of a quantum system and its entanglement with an ancilla quantum memory
are proposed and further demonstrated with silicon-integrated nanophotonic chips.
Sabra, A. I. & Stork, D. G. Theories of light from Descartes to newton. Phys. Today 36 , 71–72 (198 3)..
Bohr, N. The quantum postulate and the recent development of atomic theory. Nature 121 , 580–590 (1928)..
Scully, M. O., Englert, B. G. & Walther, H. Quantum optical tests of complementarity. Nature 351 , 111–116 (1991)..
Wheeler, J. A. The “past” and the “delayed-choice” double-slit experiment. In Mathematical Foundations of Quantum Theory (ed Marlow, A. R.) 9–48 (Academic, New York, 1978).
Ionicioiu, R. & Terno, D. R. Proposal for a quantum delayed-choice experiment. Phys. Rev. Lett. 107 , 230406 (2011)..
Tang, J. S. et al. Realization of quantum Wheeler's delayed-choice experiment. Nat. Photonics 6 , 600–604 (2012)..
Peruzzo, A. et al. A quantum delayed-choice experiment. Science 338 , 634–637 (2012)..
Kaiser, F. et al. Entanglement-enabled delayed-choice experiment. Science 338 , 637–640 (2012)..
Aharonov, Y. et al. Quantum Cheshire cats. New J. Phys. 15 , 113015 (2013)..
Chowdhury, P., Pati, A. K. & Chen, J. L. Wave and particle properties can be spatially separated in a quantum entity. Photonics Res. 9 , 1379–1383 (2021)..
Li, J. K. et al. Experimental demonstration of separating the wave‒particle duality of a single photon with the quantum Cheshire cat. Light Sci. Appl. 12 , 18 (2023)..
Jakob, M. & Bergou, J. A. Quantitative complementarity relations in bipartite systems: entanglement as a physical reality. Opt. Commun. 283 , 827–830 (2010)..
Qian, X. F., Vamivakas, A. N. & Eberly, J. H. Entanglement limits duality and vice versa. Optica 5 , 942–947 (2018)..
Ding, Z. H. et al. Universal conservation laws of the wave–particle–entanglement triad: theory and experiment. Light Sci. Appl. 14 , 82 (2025)..
Prevedel, R. et al. Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nat. Phys. 7 , 757–761 (2011)..
D'Ariano, G. M. et al. Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett. 87 , 270404 (2001)..
Salih, H., et al. Protocol for Direct Counterfactual Quantum Communication. Phys. Rev. Lett. 110 , 170502 (2013)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution