无数据
1.Sorbonne Université, Centre National de la Recherche Scientifique, Institut des NanoSciences de Paris, 75005 Paris, France
2.Chimie ParisTech, Paris Sciences & Lettres University, Centre National de la Recherche Scientifique, Institut de Recherche de Chimie Paris, 75005 Paris, France
3.Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 933, Paris 75005, France
4.Institut Langevin, ESPCI Paris, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, 75005 Paris, France
Mathieu Mivelle (mathieu.mivelle@sorbonne-universite.fr)
Received:07 June 2024,
Revised:21 February 2025,
Accepted:04 March 2025,
Published Online:19 March 2025,
Published:31 July 2025
Scan QR Code
Reynier, B. et al. Nearfield control over magnetic light-matter interactions. Light: Science & Applications, 14, 1833-1841 (2025).
Reynier, B. et al. Nearfield control over magnetic light-matter interactions. Light: Science & Applications, 14, 1833-1841 (2025). DOI: 10.1038/s41377-025-01807-z.
Light-matter interactions are frequently perceived as predominantly influenced by the electric field
with the magnetic component of light often overlooked. Nonetheless
the magnetic field plays a pivotal role in various optical processes
including chiral light-matter interactions
photon-avalanching
and forbidden photochemistry
underscoring the significance of manipulating magnetic processes in optical phenomena. Here
we explore the ability to control the magnetic light and matter interactions at the nanoscale. In particular
we demonstrate experimentally
using a plasmonic nanostructure
the transfer of energy from the magnetic nearfield to a nanoparticle
thanks to the subwavelength magnetic confinement allowed by our nano-antenna. This control is made possible by the particular design of our plasmonic nanostructure
which has been optimized to spatially decouple the electric and magnetic components of localized plasmonic fields. Furthermore
by studying the spontaneous emission from the Lanthanide-ions doped nanoparticle
we observe that the measured field distributions are not spatially correlated with the experimentally estimated electric and magnetic local densities of states of this antenna
in contradiction with what would be expected from reciprocity. We demonstrate that this counter-intuitive observation is
in fact
the result of the different optical paths followed by the excitation and emission of the ions
which forbids a direct application of the reciprocity theorem.
Punj, D. et al. A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations. Nat. Nanotechnol. 8 , 512–516 (2013)..
Winkler, P. M. et al. Optical antenna-based fluorescence correlation spectroscopy to probe the nanoscale dynamics o f biological membranes. J. Phys. Chem. Lett. 9 , 110–119 (2018)..
O'Neal, D. P. et al. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209 , 171–176 (2004)..
Fortina, P. et al. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol. 25 , 145–152 (2007)..
Grisel, R. et al. Catalysis by gold nanoparticles. Gold. Bull. 35 , 39–45 (2002)..
Sardar, R. et al. Gold nanoparticles: past, present, and future. Langmuir 25 , 13840–13851 (2009)..
Taminiau, T. H. et al. Optical antennas direct single-molecule emission. Nat. Photonics 2 , 234–237 (2008)..
Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nat. Photonics 5 , 349–356 (2011)..
Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573 , 507–518 (2019)..
Baumberg, J. J. et al. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18 , 668–678 (2019)..
Yang, B. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics 14 , 693–699 (2020)..
Tang, Y. Q. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104 , 163901 (2010)..
Xi, Z. & Urbach, H. Magnetic dipole scattering from metallic nanowire for ultrasensitive deflection sensing. Phys. Rev. Lett. 119 , 053902 (2017)..
Wu, T. et al. Strongly enhanced Raman optical activity in molecules by magnetic response of nanoparticles. J. Phys. Chem. C. 120 , 14795–14804 (2016)..
Lee, C. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589 , 230–235 (2021)..
Manjavacas, A. et al. Magnetic light and forbidden photochemistry: the case of singlet oxygen. J. Mater. Chem. C. 5 , 11824–11831 (2017)..
Devaux, E. et al. Local detection of the optical magnetic field in the near zone of dielectric samples. Phys. Rev. B 62 , 10504–10514 (2000)..
Burresi, M. et al. Magnetic light-matter interactions in a photonic crystal nanocavity. Phys. Rev. Lett. 105 , 123901 (2010)..
Le Feber, B. et al. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photonics 8 , 43–46 (2014)..
Noginova, N. et al. Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film. Opt. Express 17 , 10767–10772 (2009)..
Karaveli, S. & Zia, R. Spectral tuning by selective enhancement of electric and magnetic dipole emission. Phys. Rev. Lett. 106 , 193004 (2011)..
Rolly, B. et al. Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances. Phys. Rev. B 85 , 245432 (2012)..
Taminiau, T. H. et al. Quantifying the magnetic nature of light emission. Nat. Commun. 3 , 979 (2012)..
Hein, S. M. & Giessen, H. Tailoring magnetic dipole emission with plasmonic split-ring resonators. Phys. Rev. Lett. 111 , 026803 (2013)..
Aigouy, L. et al. Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale. Phys. Rev. Lett. 113 , 076101 (2014)..
Hussain, R. et al. Enhancing Eu3+ magnetic dipole emission by resonant plasmonic nanostructures. Opt. Lett. 40 , 1659–1662 (2015)..
Mivelle, M. et al. Strong modification of magnetic dipole emission through diabolo nanoantennas. ACS Photonics 2 , 1071–1076 (2015)..
Choi, B. et al. Selective plasmonic enhancement of electric- and magnetic-dipole radiations of Er Ions. Nano Lett. 16 , 5191–5196 (2016)..
Feng, T. H. et al. All-dielectric hollow nanodisk for tailoring magnetic dipole emission. Opt. Lett. 41 , 5011–5014 (2016)..
Rabouw, F. T., Prins, P. T. & Norris, D. J. Europium-doped NaYF4 nanocrystals as probes for the electric and magnetic local density of optical states throughout the visible spectral range. Nano Lett. 16 , 7254–7260 (2016)..
Baranov, D. G. et al. Modifying magnetic dipole spontaneous emission with nanophotonic structures. Laser Photonics Rev. 11 , 1600268 (2017)..
Feng, T. H. et al. Isotropic magnetic Purcell effect. ACS Photonics 5 , 678–683 (2018)..
Ernandes, C. et al. Exploring the magnetic and electric side of light through plasmonic nanocavities. Nano Lett. 18 , 5098–5103 (2018)..
Sanz-Paz, M. et al. Enhancing magnetic light emission with all-dielectric optical nanoantennas. Nano Lett. 18 , 3481–3487 (2018)..
Vaskin, A. et al. Manipulation of magnetic dipole emission from Eu3+ with Mie-resonant dielectric metasurfaces. Nano Lett. 19 , 1015–1022 (2019)..
Wiecha, P. R. et al. Enhancemen t of electric and magnetic dipole transition of rare-earth-doped thin films tailored by high-index dielectric nanostructures. Appl. Opt. 58 , 1682–1690 (2019)..
Cheng, X. Z. et al. Electromagnetic resonance‐modulated magnetic emission in europium‐doped sub‐micrometer zirconia spheres. Adv. Optical Mater. 9 , 2002212 (2021)..
Sugimoto, H. & Fujii, M. Magnetic Purcell enhancement by magnetic quadrupole resonance of dielectric nanosphere antenna. ACS Photonics 8 , 1794–1800 (2021)..
Brûlé, Y. et al. Magnetic and electric Purcell factor control through geometry optimization of high index dielectric nanostructures. Opt. Express 30 , 20360–20372 (2022)..
Bashiri, A. et al. Color routing of the emission from magnetic and electric dipole transitions of Eu3+ by broken-symmetry TiO2 metasurfaces. ACS Nano 18 , 506–514 (2024)..
Reynier, B. et al. Full control of electric and magnetic light–matter interactions through a nanomirror on a near-field tip. Optica 10 , 841–845 (2023)..
Kasperczyk, M. et al. Excitation of magneti c dipole transitions at optical frequencies. Phys. Rev. Lett. 114 , 163903 (2015)..
Carminati, R., Nieto-Vesperinas, M. & Greffet, J. J. Reciprocity of evanescent electromagnetic waves. J. Opt. Soc. Am. A 15 , 706–712 (1998)..
Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Photonics 1 , 438–483 (2009)..
Cao, D. et al. Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna. ACS Photonics 2 , 189–193 (2015)..
Benisty, H., Greffet, J. J.&Lalanne, P. Introduction to Nanophotonics. (Oxford: Oxford University Press, 2022).
Chang, N. C. & Gruber, J. B. Spectra and energy levels of Eu3+ in Y2O3. J. Chem. Phys. 41 , 3227–3234 (1964)..
Binnemans, K. Interpretation of europium(Ⅲ) spectra. Coord. Chem. Rev. 295 , 1–45 (2015)..
Bossini, D. et al. Magnetoplasmonics and femtosecond optom agnetism at the nanoscale. ACS Photonics 3 , 1385–1400 (2016)..
Serrano, D. et al. Ultra-narrow optical linewidths in rare-earth molecular crystals. Nature 603 , 241–246 (2022)..
Dodson, C. M. & Zia, R. Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: calculated emission rates and oscillator strengths. Phys. Rev. B 86 , 125102 (2012)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution