无数据
1.Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2.Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
3.College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and School of Physics, Nanjing University, Nanjing 210093, China
Keyu Xia (keyu.xia@nju.edu.cn)
Zhaoyang Zhang (zhyzhang@xjtu.edu.cn)
Received:14 September 2024,
Revised:09 March 2025,
Accepted:21 March 2025,
Published Online:19 May 2025,
Published:31 August 2025
Scan QR Code
Li, C. B. et al. Nonreciprocal spontaneous parametric process. Light: Science & Applications, 14, 2121-2128 (2025).
Li, C. B. et al. Nonreciprocal spontaneous parametric process. Light: Science & Applications, 14, 2121-2128 (2025). DOI: 10.1038/s41377-025-01844-8.
Mediated by the interactions with quantum vacuum fields
a probe laser field propagating in a nonlinear optical medium can generate new pair of light fields over a broad spectral range via spontaneous parametric process. Such process is inherently independent of the incident direction of light and reciprocal thus far
due to the direction-independent field-vacuum interactions. In this work
we experimentally demonstrate within sodium atomic vapors that such spontaneous parametric process can be nonreciprocal by unidirectionally coupling it to another pumped four-wave mixing process. Thanks to the broad bandwidth of the spontaneous parametric process
in combination with the Doppler and power-induced broadening of atomic energy levels
we achieve optical isolation with isolation ratio > 25 dB over a bandwidth larger than 100 GHz. Considering that both spontaneous parametric processes and the pumped four-wave mixing have been realized in diverse solid photonic platforms
the demonstrated concept can motivate further explorations in the design of integrated magnetic-free broadband optical nonreciprocity via the interactions between nonlinear optical processes.
Hoi, I. C. et al. Probing the quantum vacuum with an artificial atom in front of a mirror. Nat. Phys. 11 , 1045–1049 (2015)..
Benea-Chelmus, I. C. et al. Electric field correlation measurements on the electromagnetic vacuum state. Nature 568 , 202–206 (2019)..
Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350 , 417–420 (2015)..
Scully, M. O. & Zubairy, M. S. Quantum Optics . (Cambridge: Cambridge University Press, 1997).
Xu, Z. J. et al. Non-reciprocal energy transfer through the Casimir effect. Nat. Nanotechnol. 17 , 148–152 (2022)..
De Liberato, S. & Ciuti, C. Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency. Phys. Rev. Lett. 98 , 103602 (2007)..
Larson, J.&Mavrogordatos, T. The Jaynes-Cummings Model and Its Descendants. (Bristol: IOP Publishing Ltd, 2021).
Zhang, C. et al. Spontaneous parametric down-conversion sources for multiphoton experiments. Adv. Quantum Technol. 4 , 2000132 (2021)..
Boyd, R. W. Nonlinear Optics. 3rd edn . (Waltham: Academic Press, 2008).
Song, F. et al. Optical nonreciprocity using four-wave mixing in hot atoms. Appl. Phys. Lett. 119 , 024101 (2021)..
Lai, Y. H. et al. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photonics 14 , 345–349 (2020)..
Noh, T. G. Counterfactual quantum cryptography. Phys. Rev. Lett. 103 , 230501 (2009)..
Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530 , 313–316 (2016)..
Lecocq, F. et al. Control and readout of a superconducting qubit using a photonic link. Nature 591 , 575–579 (2021)..
Daiss, S. et al. A quantum-logic gate between distant quantum-network modules. Science 371 , 614–617 (2021)..
Lau, H. K. & Clerk, A. A. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9 , 4320 (2018)..
Yan, W. et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms. Optica 7 , 1555–1562 (2020)..
Liu, T. J. et al. Thermal photonics with broken symmetries. eLight 2 , 25(2022)..
Fan, L. et al. An all-silicon passive optical diode. Science 335 , 447–450 (2012)..
Yu, M. J. et al. Integrated electro-optic isolator on thin-film lithium niobate. Nat. Photonics 17 , 666–671 (2023)..
Del Bino, L. et al. Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect. Optica 5 , 279–282 (2018)..
Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photonics 14 , 369–374 (2020)..
Chang, L. et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics 8 , 524–529 (2014)..
Fang, K. J. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13 , 465–471 (2017)..
Estep, N. A. et al. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat. Phys. 10 , 923–927 (2014)..
Tian, H. et al. Magnetic-free silicon nitride integrated optical isolator. Nat. Photonics 15 , 828–836 (2021)..
Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photonics 11 , 774–783 (2017)..
Tzuang, L. D. et al. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photonics 8 , 701–705 (2014)..
Guo, X. X. et al. Nonreciprocal metasurface with space–time phase modulation. Light Sci. Appl. 8 , 123 (2019)..
Kittlaus, E. A. et al. Non-reciprocal interband Brillouin modulation. Nat. Photonics 12 , 613–619 (2018)..
Sohn, D. B., Kim, S. & Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photonics 12 , 91–97 (2018)..
Dong, C. H. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun. 6 , 6193 (2015)..
Shen, Z. et al. Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun. 9 , 1797 (2018)..
Kim, J. et al. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11 , 275–280 (2015)..
Sohn, D. B., Örsel, O. E. & Bahl, G. Electrically driven optical isolation through phonon-mediated photonic Autler-Townes splitting. Nat. Photonics 15 , 822–827 (2021)..
Maayani, S. et al. Flying couplers above spinning resonators generate irreversible refraction. Nature 558 , 569–572 (2018)..
Huang, R. et al. Nonreciprocal photon blockade. Phys. Rev. Lett. 121 , 153601 (2018)..
Yu, Z. F. & Fan, S. H. Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics 3 , 91–94 (2009)..
Wang, D. W. et al. Optical diode made from a moving photonic crystal. Phys. Rev. Lett. 110 , 093901 (2013)..
Horsley, S. A. R. et al. Optical nonreciprocity of cold atom Bragg mirrors in motion. Phys. Rev. Lett. 110 , 223602 (2013)..
Huang, X. Y. et al. Loss-induced nonreciprocity. Light Sci. Appl. 10 , 30 (2021)..
Hua, S. Y. et al. Demonstration of a chip-based optical isolator with parametric amplification. Nat. Commun. 7 , 13657 (2016)..
Guo, X. et al. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett. 117 , 123902 (2016)..
Metelmann, A. & Clerk, A. A. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5 , 021025 (2015)..
Hamann, A. R. et al. Nonreciprocity realized with quantum nonlinearity. Phys. Rev. Lett. 121 , 123601 (2018)..
Lodahl, P. et al. Chiral quantum optics. Nature 541 , 473–480 (2017)..
Pucher, S. et al. Atomic spin-controlled non-reciprocal Raman amplification of fiber-guided light. Nat. Photonics 16 , 380–383 (2022)..
Xia, K. Y. et al. Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling. Phys. Rev. A 90 , 043802 (2014)..
Tang, L. et al. On-chip chiral single-photon interface: isolation and unidirectional emission. Phys. Rev. A 99 , 043833 (2019)..
Tang, J. S. et al. Nonreciprocal single-photon band structure. Phys. Rev. Lett. 128 , 203602 (2022)..
Yuan, L. Q., Xu, S. S. & Fan, S. H. Achieving nonreciprocal unidirectional single-photon quantum transport using the photonic Aharonov-Bohm effect. Opt. Lett. 40 , 5140–5143 (2015)..
Scheucher, M. et al. Quantum optical circulator controlled by a single chirally coupled atom. Science 354 , 1577–1580 (2016)..
Zhang, S. C. et al. Thermal-motion-induced non-reciprocal quantum optical system. Nat. Photonics 12 , 744–748 (2018)..
Xia, K. Y., Nori, F. & Xiao, M. Cavity-free optical i solators and circulators using a chiral cross-Kerr nonlinearity. Phys. Rev. Lett. 121 , 203602 (2018)..
Burresi, M. et al. Observation of polarization singularities at the nanoscale. Phys. Rev. Lett. 102 , 033902 (2009)..
Dong, M. X. et al. All-optical reversible single-photon isolation at room temperature. Sci. Adv. 7 , eabe8924 (2021)..
Hu, X. X. et al. Noiseless photonic non-reciprocity via optically-induced magnetization. Nat. Commun. 12 , 2389 (2021)..
Liang, C. et al. Collision-induced broadband optical nonreciprocity. Phys. Rev. Lett. 125 , 123901 (2020)..
Wu, H. D. et al. Fundamental distinction of electromagnetically induced transparency and Autler-Townes splitting in breaking the time-reversal symmetry. Laser Photonics Rev. 16 , 2100708 (2022)..
Tang, L. et al. Quantum squeezing induced optical nonreciprocity. Phys. Rev. Lett. 128 , 083604 (2022)..
Lu, X. D. et al. Nonreciprocity and quantum correlations of light transport in hot atoms via reservoir engineering. Phys. Rev. Lett. 126 , 223603 (2021)..
Boyd, R. W. et al. Four-wave parametric interactions in a strongly driven two-level system. Phys. Rev. A 24 , 411–423 (1981)..
Barnett, S. M. & Radmore, P. M. Methods in Theoretical Quantum Optics . (Oxford: Oxford University Press, 2002).
Krems, R. V. Molecules in Electromagnetic Fields: from Ultracold Physics to Controlled Chemistry . (Hoboken: John Wiley & Sons, Inc, 2019).
Sun, J. et al. Two-photon resonant four-wave mixing in a dressed atomic system. Phys. Rev. A 70 , 053820 (2004)..
Zheng, A. J. et al. Electromagnetically-induced-transparency intensity-correlation power broadening in a buffer gas. Phys. Rev. A 93 , 043825 (2016)..
Coldren, L. A., Corzine, S. W.&Mašanović, M. L. Diode Lasers and Photonic Integrated Circuits. 2nd edn. (Hoboken: John Wiley&Sons, Inc, 2012).
He, B. et al. Quantum noise effects with Kerr-nonlinearity enhancement in coupled gain-loss waveguides. Phys. Rev. A 91 , 053832 (2015)..
Jiang, Y., Mei, Y. F. & Du, S. W. Quantum Langevin theory for two coupled phase-conjugated electromagnetic waves. Phys. Rev. A 107 , 053703 (2023)..
Pan, X. Z. et al. Orbital-angular-momentum multiplexed continuous-variable entanglement from four-wave mixing in hot atomic vapor. Phys. Rev. Lett. 123 , 070506 (2019)..
Boyer, V. et al. Entangled images from four-wave mixing. Science 321 , 544–547 (2008)..
Corzo, N. V. et al. Noiseless optical amplifier operating on hundreds of spatial modes. Phys. Rev. Lett. 109 , 043602 (2012)..
Happer, W. Optical pumping. Rev. Mod. Phys. 44 , 169–249 (1972)..
Wang, H., Goorskey, D. & Xiao, M. Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system. Phys. Rev. Lett. 87 , 073601 (2001)..
Zhang, Y. P. et al. Controlled spatial beam splitter using four-wave-mixing images. Phys. Rev. A 80 , 055804 (2009)..
Hu, Y. Q. et al. Multiwavelength magnetic-free optical isolator by optical pumping in warm atoms. Phys. Rev. Appl. 12 , 054004 (2019)..
Shi, Y., Yu, Z. F. & Fan, S. H. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics 9 , 388–392 (2015)..
Zektzer, R. et al. Nanoscale atomic suspended waveguides for improved vapour coherence times and optical frequency referencing. Nat. Photonics 15 , 772–779 (2021)..
Kitching, J. Chip-scale atomic devices. Appl. Phys. Rev. 5 , 031302 (2018)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution