无数据
1.National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
2.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3.College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
4.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
Mingbo Pu (pmb@ioe.ac.cn)
Xiangang Luo (lxg@ioe.ac.cn)
Received:05 September 2024,
Revised:15 February 2025,
Accepted:25 March 2025,
Published Online:16 May 2025,
Published:31 August 2025
Scan QR Code
Zhang, F. et al. Dispersion-engineered spin photonics based on folded-path metasurfaces. Light: Science & Applications, 14, 2111-2120 (2025).
Zhang, F. et al. Dispersion-engineered spin photonics based on folded-path metasurfaces. Light: Science & Applications, 14, 2111-2120 (2025). DOI: 10.1038/s41377-025-01850-w.
Spin photonics revolutionizes photonic technology by enabling precise manipulation of photon spin states
with spin-decoupled metasurfaces emerging as pivotal in complex optical field manipulation. Here
we propose a folded-path metasurface concept that enables independent dispersion and phase control of two opposite spin states
effectively overcoming the limitations of spin photonics in achieving broadband decoupling and higher integration levels. This advanced dispersion engineering is achieved by modifying the equivalent length of a folded path
generated by a virtual reflective surface
in contrast to previous methods that depended on effective refractive index control by altering structural geometries. Our approach unlocks previously unattainable capabilities
such as achieving achromatic focusing and achromatic spin Hall effect using the rotational degree of freedom
and generating spatiotemporal vector optical fields with only a single metasurface. This advancement substantially broadens the potential of metasurface-based spin photonics
extending its applications from the spatial domain to the spatiotemporal domain.
Bliokh, K. Y. et al. Spin-orbit interactions of light. Nat. Photonics 9 , 796–808 (2015)..
Cardano, F. & Marrucci, L. Spin-orbit photonics. Nat. Photonics 9 , 776–778 (2015)..
Yin, X. B. et al. Photonic spin hall effect at metasurfaces. Science 339 , 1405–1407 (2013)..
Hosten, O. & Kwiat, P. Observation of the spin hall effect of light via weak measurements. Science 319 , 787–790 (2008)..
Luo, X. G. et al. Broadband spin hall effect of light in single nanoapertures. Light Sci. Appl. 6 , e16276 (2017)..
Cohen, E. et al. Geometric phase from Aharonov-Bohm to Pancharatnam-Berry and beyond. Nat. Rev. Phys. 1 , 437–449 (2019)..
Ling, X. H. et al. Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light Sci. Appl. 4 , e290 (2015)..
Liu, J. W. et al. Metasurface-assisted quantum nonlocal weak-measurement microscopy. Phys. Rev. Lett. 132 , 043601 (2024)..
Chen, S. Z. et al. Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin hall effect. Phys. Rev. Appl. 13 , 014057 (2020)..
Wang, R. S., He, S. S. & Luo, H. L. Photonic spin-hall differential microscopy. Phys. Rev. Appl. 18 , 044016 (2022)..
Xu, J. et al. Tunable optical differential operation based on graphene at a telecommunication wavelength. Opt. Exp. 31 , 30402–30412 (2023)..
He, S. S. et al. High-order photonic spin hall effect and its application in high-contrast imaging. Phys. Rev. Appl. 21 , 034045 (2024)..
Wesemann, L. et al. Real-time phase imaging with an asymmetric transfer function metasurface. ACS Photonics 9 , 1803–1807 (2022)..
Tang, D. L. et al. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing. Opto-Electron. Adv. 6 , 220063 (2023)..
Bao, Y. J. et al. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. Sci. Adv. 7 , eabh0365 (2021)..
Xiong, B. et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379 , 294–299 (2023)..
Bao, Y. J. et al. Observation of full-parameter Jones matrix in bilayer metasurface. Nat. Commun. 13 , 7550 (2022)..
Zhang, F. et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv. Funct. Mater. 27 , 1704295 (2017)..
Devlin, R. C. et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358 , 896–901 (2017)..
Balthasar Mueller, J. P. et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118 , 113901 (2017)..
Li,X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2 , e1601102 (2016)..
Luo, X. G. et al. Vector optical field manipulation via structural functional materials: tutorial. J. Appl. Phys. 131 , 181101 (2022)..
Dorrah, A. H. et al. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics 15 , 287–296 (2021)..
Li, Y. et al. Longitudinally variable 3D optical polarization structures. Sci. Adv. 9 , eadj6675 (2023)..
Zaidi, A. et al. Metasurface-enabled single-shot and complete mueller matrix imaging. Nat. Photonics 18 , 704–712 (2024)..
Rubin, N. A. et al. Matrix fourier optics enables a compact full-stokes polarization camera. Science 365 , eaax1839 (2019)..
Li, L. et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science 368 , 1487–1490 (2020)..
Zhou, J. X. et al. Metasurface enabled quantum edge detection. Sci. Adv. 6 , eabc4385 (2020)..
Yu, P., Li, J. X. & Liu, N. Electrically tunable optical metasurfaces for dynamic polarization conver sion. Nano Lett. 21 , 6690–6695 (2021)..
Kaissner, R. et al. An electrochemically programmable metasurface with independently controlled metasurface pixels at optical frequencies. Nano Lett. 24 , 9961–9966 (2024)..
Yao, J. et al. Nonlocal metasurface for dark-field edge emission. Sci. Adv. 10 , eadn2752 (2024)..
Chen, Q. M. et al. Highly efficient vortex generation at the nanoscale. Nat. Nanotechnol. 19 , 1000–1006 (2024)..
Hu, Y. Q. et al. Asymptotic dispersion engineering for ultra-broadband meta-optics. Nat. Commun. 14 , 6649 (2023)..
Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13 , 227–232 (2018)..
Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13 , 220–226 (2018)..
Ou, K. et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Sci. Adv. 6 , eabc0711 (2020)..
Wang, Y. J. et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun. 12 , 5560 (2021)..
Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14 , 227–231 (2019)..
Xiao, X. J. et al. Large-scale achromatic flat lens by light frequency-domain coherence optimization. Light Sci. Appl. 11 , 323 (2022)..
Mansouree, M. et al. Multifunctional 2.5D metastructures enabled by adjoint optimization. Optica 7 , 77–84 (2020)..
Luo, Z. Y. et al. Achromatic diffractive liquid-crystal optics for virtual reality displays. Light Sci. Appl. 12 , 230 (2023)..
Gopakumar, M. et al. Ful l-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature 629 , 791–797 (2024)..
Fan, Y. D. et al. Dispersion-assisted high-dimensional photodetector. Nature 630 , 77–83 (2024)..
Zhang, F. et al. A miniature meta-optical system for reconfigurable wide-angle imaging and polarization-spectral detection. Engineering 35 , 67–73 (2024)..
Yang, Z. Y. et al. Miniaturization of optical spectrometers. Science 371 , eabe0722 (2021)..
Chen, L. et al. Synthesizing ultrafast optical pulses with arbitrary spatiotemporal control. Sci. Adv. 8 , eabq8314 (2022)..
Divitt, S. et al. Ultrafast optical pulse shaping using dielectric metasurfaces. Science 364 , 890–894 (2019)..
Liu, X. et al. Spatiotemporal optical vortices with controllable radial and azimuthal quantum numbers. Nat. Commun. 15 , 5435 (2024)..
Gao, H. et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron. Sci. 2 , 220026 (2023)..
Teng, J. H. A novel method for designing crosstalk-free achromatic full Stokes imaging polarimeter. Opto-Electron. Adv. 6 , 230113 (2023)..
Chen, Q. K. et al. Theory and fundamental limit of quasiachromatic metalens by phase delay extension. Phys. Rev. Lett. 131 , 193801 (2023)..
Presutti, F. & Monticone, F. Focusing on bandwidth: achromatic metalens limits. Optica 7 , 624–631 (2020)..
Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5 , 604–620 (2020)..
Balli, F. et al. A hybrid achromatic metalens. Nat. Commun. 11 , 3892 (2020)..
Richards, C. A. et al. Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible. Nat. Commun. 14 , 3119 (2023)..
Cheng, W. et al. Broadband achromatic imaging of a metalens with optoelectronic computing fusion. Nano Lett. 24 , 254–260 (2024)..
Pu, M. B. et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1 , e1500396 (2015)..
Chen, C. et al. Metasurfaces with planar chiral meta-atoms for spin light manipulation. Nano Lett. 21 , 1815–1821 (2021)..
Chen, L. et al. Shaping polarization within an ultrafast laser pulse using dielectric metasurfaces. Optica 10 , 26–32 (2023)..
Pu, M. B. et al. Revisitation of extraordinary Young's interference: from catenary optical fields to spin–orbit interaction in metasurfaces. ACS Photonics 5 , 3198–3204 (2018)..
Liu , M. Z. et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci. Appl. 10 , 107 (2021)..
Arbabi, A. et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10 , 937–943 (2015)..
Zhang, F. et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat. Commun. 14 , 1946 (2023)..
Xie, X. et al. Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms. Phys. Rev. Lett. 126 , 183902 (2021)..
Shrestha, S. et al. Broadband achromatic dielectric metalenses. Light Sci. Appl. 7 , 85 (2018)..
Bao, H. L. et al. Field-driven inverse design of high-performance polarization-multiplexed meta-devices. Laser Photonics Rev. 18 , 2301158 (2024)..
Ha, Y. L. et al. Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electron. Adv. 6 , 230133 (2023)..
Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6 , 4370–4379 (1972)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution