无数据
1.CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Spain
2.Materials Physics Center, CSIC-UPV/EHU, 20018 Donostia-San Sebastián, Spain
3.Institute of Physics, University of Münster, 48149 Münster, Germany
4.Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
5.IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
6.Department of Electricity and Electronics, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
Philippe Roelli (p.roelli@nanogune.eu)
Rainer Hillenbrand (r.hillenbrand@nanogune.eu)
Received:29 October 2024,
Revised:26 March 2025,
Accepted:31 March 2025,
Published Online:22 May 2025,
Published:31 August 2025
Scan QR Code
Roelli, P. et al. In-operando control of sum-frequency generation in tip-enhanced nanocavities. Light: Science & Applications, 14, 2152-2162 (2025).
Roelli, P. et al. In-operando control of sum-frequency generation in tip-enhanced nanocavities. Light: Science & Applications, 14, 2152-2162 (2025). DOI: 10.1038/s41377-025-01855-5.
Sum-frequency generation (SFG) is a second-order nonlinear process widely used for characterizing surfaces and interfaces with monolayer sensitivity. Recently
optical field enhancement in plasmonic nanocavities has enabled SFG with continuous wave (CW) lasers from nanoscale areas of molecules
promising applications like nanoscale SFG spectroscopy and coherent upconversion for mid-infrared detection at visible frequencies. Here
we demonstrate CW SFG from individual nanoparticle-on-mirror (NPoM) cavities
which are resonant at visible frequencies and filled with a monolayer of molecules
when placed beneath a metal scanning probe tip. The tip acts as an efficient broadband antenna
focusing incident CW infrared illumination onto the nanocavity. The cascaded near-field enhancement within the NPoM nanocavity yields nonlinear optical responses across a broad range of infrared frequencies
achieving SFG enhancements of up to 14 orders of magnitude. Further
nanomechanical positioning of the tip allows for in-operando control of SFG by tuning the local field enhancement rather than the illumination intensities. The versatility of tip-enhanced nanocavities allows for SFG studies of a wide range of molecular species in the few-molecule regime without the need for complex nanofabrication. Our results also promise SFG nanoimaging with tips providing strong visible and IR field enhancement at their apex
offering a robust platform for future applications in nonlinear nanooptics.
Dick, B. & Hochstrasser, R. M. Spectroscopy using sum- and difference-frequency generation in molecular solids. Phys. Rev. Lett. 51 , 2221–2223 (1983)..
Zhu, X. D., Suhr, H. & Shen, Y. R. Surface vibrational spectroscopy by infrared-visible sum frequency generation. Phys. Rev. B 35 , 3047–3050 (1987)..
Shen, Y. R. Fundamentals of Sum-Frequency Spectroscopy 1st edn, Vol. 316 (Cambridge: Cambridge University Press, 2016).
Fischer, P. & Hache, F. Nonlinear optical spectroscopy of chiral molecules. Chirality 17 , 421–437 (2005)..
Chung, C.-Y. & Potma, E. O. Biomolecular imaging with coherent nonlinear vibrational microscopy. Annu. Rev. Phys. Chem. 64 , 77–99 (2013)..
Shah, S. A. & Baldelli, S. Chemical imaging of surfaces with sum frequency generation vibrational spectroscopy. Acc. Chem. Res. 53 , 1139–1150 (2020)..
Wang, H. Y. & Xiong, W. Vibrational sum-frequency generation hyperspectral microscopy for molecular self-assembled systems. Annu. Rev. Phys. Chem. 72 , 279–306 (2021)..
Chen, C. K., de Castro, A. R. B., Shen, Y. R. & DeMartini, F. Surface coherent anti-stokes raman spectroscopy. Phys. Rev. Lett. 43 , 946–949 (1979)..
Ichimura, T., Hayazawa, N., Hashimoto, M., Inouye, Y. & Kawata, S. Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging. Phys. Rev. Lett. 92 , 220801 (2004)..
Yampolsky, S. et al. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nat. Photonics 8 , 650–656 (2014)..
Luo, Y. et al. Imaging and controlling coherent phonon wave packets in single graphene nanoribbons. Nat. Commun. 14 , 3484 (2023)..
Sakurai, A., Takahashi, S., Mochizuki, T. & Sugimoto, T. Tip-enhanced sum frequency generation for molecular vibrational nanospectroscopy. Nano Lett. 25 , 6390–6398 (2025)..
Chen, W. et al. Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374 , 1264–1267 (2021)..
Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R . Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18 , 668–678 (2019)..
Roelli, P., Martin-Cano, D., Kippenberg, T. J. & Galland, C. Molecular platform for frequency upconversion at the single-photon level. Phys. Rev. X 10 , 031057 (2020)..
Xomalis, A. et al. Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science 374 , 1268–1271 (2021)..
Chu, Y. W. & Gröblacher, S. A perspective on hybrid quantum opto- and electromechanical systems. Appl. Phys. Lett. 117 , 150503 (2020)..
Li, K. R., Stockman, M. I. & Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91 , 227402 (2003)..
Höppener, C., Lapin, Z. J., Bharadwaj, P. & Novotny, L. Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field. Phys. Revi. Lett. 109 , 017402 (2012)..
Novotny, L. & Hecht, B. Principles of Nano-Optics 2nd edn (Cambridge: Cambridge University Press, 2012).
Le Ru, E. C. L. & Etchegoin, P. G. Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Amsterdam: Elsevier, 2009).
Talley, C. E. et al. Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5 , 1569–1574 (2005)..
Zhang, Y., Aizpurua, J. & Esteban, R. Optomechanical collective effects in surface-enhanced raman scattering from many molecules. ACS Photonics 7 , 1676–1688 (2020)..
Heeg, S., Mueller, N. S., Wasserroth, S., Kusch, P. & Reich, S. Experimental tests of surface-enhanced Raman scattering: moving beyond the electromagnetic enhancement theory. J. Raman Spectrosc. 52 , 310–322 (2021)..
Covert, P. A. & Hore, D. K. Assessing the gold standard: the complex vibrational nonlinear susceptibility of metals. J. Phys. Chem. C 119 , 271–276 (2015)..
Dalstein, L., Revel, A., Humbert, C. & Busson, B. Nonlinear optical response of a gold surface in the visible range: a study by two-color sum-frequency generation spectroscopy. I. Experimental determination. J. Chem. Phys. 148 , 134701 (2018)..
Humbert, C., Noblet, T., Dalstein, L., Busson, B. & Barbillon, G. Sum-frequency generation spectroscopy of plasmonic nanomaterials: a review. Materials 12 , 836 (2019)..
Ahmed, A. et al. Structural order of the molecular adlayer impacts the stability of nanoparticle-on-mirror plasmonic cavities. ACS Photonics 8 , 1863–1872 (2021)..
Kusch, P. et al. Dual-scattering near-field microscope for correlative nanoimaging of SERS and electromagnetic hotspots. Nano Lett. 17 , 2667–2673 (2017)..
Park, K.-D. et al. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. Sci. Adv. 5 , eaav5931 (2019)..
Darlington, T. P. et al. Highly tunable room-temperature plexcitons in monolayer WSe 2 /gap-plasmon nano cavities. https://doi.org/10.48550/arXiv.2311.02513 https://doi.org/10.48550/arXiv.2311.02513 (2023)..
Metzger, B. et al. Purcell-enhanced spontaneous emission of molecular vibrations. Phys. Rev. Lett. 123 , 153001 (2019)..
Tserkezis, C. et al. Hybridization of plasmonic antenna and cavity modes: extreme optics of nanoparticle-on-mirror nanogaps. Phys. Rev. A 92 , 053811 (2015)..
Zhang, C., Hugonin, J.-P., Greffet, J.-J. & Sauvan, C. Surface plasmon polaritons emission with nanopatch antennas: enhancement by means of mode hybridization. ACS Photonics 6 , 2788–2796 (2019)..
Kawata, Y., Xu, C. & Denk, W. Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip. J. Appl. Phys. 85 , 1294–1301 (1999)..
Zayats, A. V. & Sandoghdar, V. Apertureless scanning near-field second-harmonic microscopy. Opt. Commun. 178 , 245–249 (2000)..
Sánchez, E. J., Novotny, L. & Xie, X. S. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82 , 4014–4017 (1999)..
Yin, X. B. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344 , 488–490 (2014)..
Kravtsov, V., Ulbricht, R., Atkin, J. M. & Raschke, M. B. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 11 , 459–464 (2016)..
Yao, K. Y. et al. Nanoscale optical imaging of 2d semiconductor stacking orders by exciton-enhanced second harmonic generation. Adv. Opt. Mater. 10 , 2200085 (2022)..
Takahashi, S., Sakurai, A., Mochizuki, T. & Sugimoto, T. Broadband tip-enhanced nonlinear optical response in a plasmonic nanocavity. J. Phys. Chem. Lett. 14 , 6919–6926 (2023)..
Gray, T. P., Nishida, J., Johnson, S. C. & Raschke, M. B. 2D Vibrational exciton nanoimaging of domain formation in self-assembled monolayers. Nano Lett. 21 , 5754–5759 (2021)..
Chen, L. et al. The Sommerfeld ground-wave limit for a molecule adsorbed at a surface. Science 363 , 158–161 (2019)..
Chen, T.-T., Du, M., Yang, Z., Yuen-Zhou, J. & Xiong, W. Cavity-enabled enhancement of ultrafast intramolecular vibrational redistribution over pseudorotation. Science 378 , 790–794 (2022)..
Baumberg, J. J. Picocavities: a primer. Nano Lett. 22 , 5859–5865 (2022)..
Chen, W. et al. Intrinsic luminescence blinking from plasmonic nanojunctions. Nat. Commun. 12 , 2731 (2021)..
Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6 , 4370–4379 (1972)..
Babar, S. & Weaver, J. H. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 54 , 477–481 (2015)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution