无数据
1.School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices & Suzhou Key Laboratory of Intelligent Photoelectric Perception, Soochow University, Suzhou 215006, China
2.The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
3.Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
4.Joint Research Center of Light Manipulation Science and Photonic Integrated Chip, East China Normal University, Shanghai 200241, China
Zhigang Chen (zgchen@nankai.edu.cn)
Yangjian Cai (yangjiancai@sdnu.edu.cn)
Chengliang Zhao (zhaochengliang@suda.edu.cn)
Received:10 December 2024,
Revised:25 March 2025,
Accepted:08 April 2025,
Published Online:27 April 2025,
Published:31 July 2025
Scan QR Code
Wang, Z Y. et al. Topological links and knots of speckled light mediated by coherence singularities. Light: Science & Applications, 14, 1842-1850 (2025).
Wang, Z Y. et al. Topological links and knots of speckled light mediated by coherence singularities. Light: Science & Applications, 14, 1842-1850 (2025). DOI: 10.1038/s41377-025-01865-3.
Links and knots are exotic topological structures that have garnered significant interest across multiple branches of natural sciences. Coherent links and knots
such as those constructed by phase or polarization singularities of coherent light
have been observed in various three-dimensional optical settings. However
incoherent links and knots—knotted or connected lines of coherence singularities—arise from a fundamentally different concept. They are “hidden” in the statistic properties of a randomly fluctuating field
making their presence often elusive or undetectable. Here
we theoretically construct and experimentally demonstrate such topological entities of incoherent light. By leveraging a state-of-the-art incoherent modal-decomposition scheme
we unveil incoherent topological structures from fluctuating light speckles
including Hopf links and Trefoil knots of coherence singularities that are robust against coherence and intensity fluctuations. Our work is applicable to diverse wave systems where incoherence or practical coherence is prevalent
and may pave the way for design and implementation of statistically-shaped topological structures for various applications such as high-dimensional optical information encoding and optical communications.
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots (American Mathematical Society, Providence, 1994).
Kauffman, L. H. Knots and Physics . 3rd ed. (World Scientific, Singapore, 2001).
Davies, A. et al. Advancing mathematics by guiding human intuition with AI. Nature 600 , 70–74 (2021)..
Irvine, W. T. M. & Bouwmeester, D. Linked and knotted beams of light. Nat. Phys. 4 , 716–720 (2008)..
Witten, E. Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121 , 351–399 (1989)..
Wang, J. W. et al. Experimental observation of Berry phases in optical Möbius-strip microcavities. Nat. Photonics 17 , 120–125 (2023)..
Moffatt, H. K. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35 , 117–129 (1969)..
Zhang, Q. X. et al. Ferromagnetic switching of knotte d vector fields in liquid crystal colloids. Phys. Rev. Lett. 115 , 097802 (2015)..
Tai, J. S. B. & Smalyukh, I. I. Three-dimensional crystals of adaptive knots. Science 365 , 1449–1453 (2019)..
Tai, J. S. B., Wu, J. S. & Smalyukh, I. I. Geometric transformation and three-dimensional hopping of Hopf solitons. Nat. Commun. 13 , 2986 (2022)..
Berger, M. A. Introduction to magnetic helicity. Plasma Phys. Control. Fusion 41 , B167 (1999)..
Poy, G. et al. Interaction and co-assembly of optical and topological solitons. Nat. Photonics 16 , 454–461 (2022)..
Zhang, H. K. et al. Creation of acoustic vortex knots. Nat. Commun. 11 , 3956 (2020)..
Zhao, H. Q. et al. Liquid crystal defect structures with Möbius strip topology. Nat. Phys. 19 , 451–459 (2023)..
Kleckner, D. & Irvine, W. T. M. Creation and dynamics of knotted vortices. Nat. Phys. 9 , 253–258 (2013)..
Wan, C. H. et al. Scalar optical hopfions. eLight 2 , 22 (2022)..
Zhong, J. Z., Wan, C. H. & Zhan, Q. W. Optical twisted phase strips. ACS Photonics 10 , 3384–3389 (2023)..
Veretenov, N. A., Fedorov, S. V. & Rosanov, N. N. Topological vortex and knotted dissipative optical 3D solitons generated by 2D vortex solitons. Phys. Rev. Lett. 119 , 263901 (2017)..
Guo, X. et al. Tying polarization‐switchable optical vortex knots and links via holographic all‐dielectric metasurfaces. Laser Photonics Rev. 14 , 1900366 (2020)..
Larocque, H. et al. Optical framed knots as information carriers. Nat. Commun. 11 , 5119 (2020)..
Wang, X. L. et al. Manipulating propagation and evolution of polarization singularities in composite Bessel-like fields. Photonics Res. 11 , 121 (2023)..
Berry, M. V. & Dennis, M. R. Knotted and linked phase singulariti es in monochromatic waves. Proc. R. Soc. Lond. Ser. A: Math., Phys. Eng. Sci. 457 , 2251–2263 (2001)..
Leach, J. et al. Knotted threads of darkness. Nature 432 , 165 (2004)..
Dennis, M. R. et al. Isolated optical vortex knots. Nat. Phys. 6 , 118–121 (2010)..
Leach, J. et al. Vortex knots in light. N. J. Phys. 7 , 55 (2005)..
Romero, J. et al. Entangled optical vortex links. Phys. Rev. Lett. 106 , 100407 (2011)..
Bauer, T. et al. Observation of optical polarization Möbius strips. Science 347 , 964–966 (2015)..
Larocque, H. et al. Reconstructing the topology of optical polarization knots. Nat. Phys. 14 , 1079–1082 (2018)..
Pisanty, E. et al. Knotting fractional-order knots with the polarization state of light. Nat. Photonics 13 , 569–574 (2019)..
Forbes, A. et al. Structured light. Nat. Photonics 15 , 253–262 (2021)..
Wan, C. H., Chong, A. & Zhan, Q. W. Optical spatiotemporal vortices. eLight 3 , 11 (2023)..
Li, P. et al. Optical vortex knots and links via holographic metasurfaces. Adv. Phys.: X 6 , 1843535 (2021)..
Kong, L. J. et al. High capacity topological coding based on nested vortex knots and links. Nat. Commun. 13 , 2705 (2022)..
Kong, L. J. et al. Topological holography and storage with optical knots and links. Laser Photonics Rev. 17 , 2300005 (2023)..
van Dijk, T., Schouten, H. F. & Visser, T. D. Coherence singularities in the field generated by partially coherent sources. Phys. Rev. A 79 , 033805 (2009)..
Palacios, D. M. et al. Spatial correlation singularity of a vortex field. Phys. Rev. Lett. 92 , 143905 (2004)..
Lu, X. Y. et al. Phase detection of coherence singularities and determination of the topological charge of a partially coherent vortex beam. Appl. Phys. Lett. 114 , 201106 (2019)..
Rana, A. et al. Potential of attosecond coherent diffractive imaging. Phys. Rev. Lett. 125 , 086101 (2020)..
Lu, X. Y. et al. Four-dimensional experimental characterization of partially coherent light using incoherent modal decomposition. Nanophotonics 12 , 3463–3470 (2023)..
Wolf, E. Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge, 2007).
Goodman, J. W. Statistical Optics . 2nd ed. (John Wiley & Sons, Hoboken, 2015).
O’holleran, K. et al. Fractality of light’s darkness. Phys. Rev. Lett. 100 , 053902 (2008)..
O’holleran, K., Dennis, M. R. & Padgett, M. J. Topology of light’s darkness. Phys. Rev. Lett. 102 , 143902 (2009)..
Wolf, E. New theory of partial coherence in the space–frequency domain. Part Ⅰ: spectra and cross spectra of steady-state sources. J. Opt. Soc. Am. 72 , 343–351 (1982)..
Pires, D. G. et al. Stability of optical knots in atmospheric turbulence. Nat. Commun. 16 , 3001 (2025)..
Zhong, J. Z. et al. Observation of optical vortex knots and links associated with topological charge. Opt. Express 29 , 38849–38857 (2021)..
Peng, D. M. et al. Optical coherence encryption with structured random light. PhotoniX 2 , 6 (2021)..
Cheng, M. J. et al. Metrology with a twist: probing and sensing with vortex light. Light Sci. Appl. 14 , 4 (2025)..
Hu, Z. C. et al. Topological orbital angular momentum extraction and twofold protection of vortex transport. Nat. Photonics 19 , 162–169 (2025)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution