无数据
1.Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
2.Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
Isabel Barth (isabel_barth@hms.harvard.edu)
Hakho Lee (hlee@mgh.harvard.edu)
Received:04 January 2025,
Revised:08 April 2025,
Accepted:10 April 2025,
Published Online:28 April 2025,
Published:31 July 2025
Scan QR Code
Barth, I. & Lee, H. Nanophotonic sensing and label-free imaging of extracellular vesicles. Light: Science & Applications, 14, 1786-1797 (2025).
Barth, I. & Lee, H. Nanophotonic sensing and label-free imaging of extracellular vesicles. Light: Science & Applications, 14, 1786-1797 (2025). DOI: 10.1038/s41377-025-01866-2.
This review examines imaging-based nanophotonic biosensing and interferometric label-free imaging
with a particular focus on vesicle detection. It specifically compares dielectric and plasmonic metasurfaces for label-free protein and extracellular vesicle detection
highlighting their respective advantages and limitations. Key topics include: (ⅰ) refractometric sensing principles using resonant dielectric and plasmonic surfaces; (ⅱ) state-of-the-art developments in both plasmonic and dielectric nanostructured resonant surfaces; (ⅲ) a detailed comparison of resonance characteristics
including amplitude
quality factor
and evanescent field enhancement; and (ⅳ) the relationship between sensitivity
near-field enhancement
and analyte overlap in different sensing platforms. The review provides insights into the fundamental differences between plasmonic and dielectric platforms
discussing their fabrication
integration potential
and suitability for various analyte sizes. It aims to offer a unified
application-oriented perspective on the potential of these resonant surfaces for biosensing and imaging
aiming at addressing topics of interest for both photonics experts and potential users of these technologies.
Hortin, G. L., Carr, S. A. & Anderson, N. L. Introduction: Advances in protein analysis for the clinical laboratory. Clin. Chem. 56 , 149–151 (2010)..
Borrebaeck, C. A. K. Precision diagnostics: Moving towards protein biomarker signatures of clinical utility in cancer. Nat. Rev. Cancer 17 , 199–204 (2017)..
Hanash, S. & Taguchi, A. Application of proteomics to cancer early detection. Cancer J. 17 , 423–428 (2011)..
Van Poppel, H. et al. Serum PSA-based early detection of prostate cancer in Europe and globally: Past, present and future. Nat. Rev. Urol. 19 , 562–572 (2022)..
Rao, S. et al. Past, present, and future of serum tumor markers in management of ovarian cancer: A guide for the radiologist. RadioGraphics 41 , 1839–1856 (2021)..
Shao, H. L. et al. New technologies for analysis of extracellular vesicles. Chem. Rev. 118 , 1917–1950 (2018)..
Xu, R. et al. Extracellular vesicles in cancer—implications for future improvements in cancer care. Nat. Rev. Clin. Oncol. 15 , 617–638 (2018)..
Jo, A. et al. Inaugurating high‐throughput profiling of extracellular vesicles for earlier ovarian cancerdetection. Adv. Sci. 10 , 2301930 (2023)..
Park, J. et al. An integrated magneto-electrochemical device for the rapid profiling of tumour extracellular vesicles from blood plasma. Nat. Biomed. Eng. 5 , 678–689 (2021)..
Choi, B. D. et al. Intraventricular CARv3-TEAM-E T cells in recurrent glioblastoma. N. Engl. J. Med. 390 , 1290–1298 (2024)..
Alix-Panabières, C. & Pantel, K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 11 , 858–873 (2021)..
Hayrapetyan, H. et al. Enzyme-linked immunosorbent assay: Types and applications. Methods Mol. Biol. 2612 , 1–17 (2023)..
Matson, R. S. ELISA-based biosensors. Methods Mol. Biol. 2612 , 225–238 (2023)..
Porstmann, T. & Kiessig, S. T. Enzyme immunoassay techniques an overview. J. Immunol. Methods 150 , 5–21 (1992)..
Sakamoto, S. et al. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 72 , 32–42 (2018)..
Krauss, T. F. et al. Photonic and electrochemical biosensors for near-patient tests–a critical comparison. Optica 11 , 1408–1418 (2024)..
Altug, H. et al. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17 , 5–16 (2022)..
Suthar, J. et al. Recent developments in biosensing methods for extracellular vesicle protein characterization. WIREs Nanomed. Nanobiotechnol. 15 , e1839 (2023)..
Javaid, Z. et al. Reviewing advances i n nanophotonic biosensors. Front. Chem. 12 , 1449161 (2024)..
Shaked, N. T. et al. Label-free biomedical optical imaging. Nat. Photonics 17 , 1031–1041 (2023)..
Barth, I. et al. Phase noise matching in resonant metasurfaces for intrinsic sensing stability. Optica 11 , 354–361 (2024)..
Kenaan, A. et al. Guided mode resonance sensor for the parallel detection of multiple protein biomarkers in human urine with high sensitivity. Biosens. Bioelectron. 153 , 112047 (2020)..
Cetin, A. E. et al. Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci. Appl. 3 , e122 (2014)..
Li, X. K. et al. Plasmonic nanohole array biosensor for label-free and real-time analysis of live cell secretion. Lab on a Chip 17 , 2208–2217 (2017)..
Jahani, Y. et al. Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles. Nat. Commun. 12 , 3246 (2021)..
Conteduca, D., Quinn, S. D. & Krauss, T. F. Dielectric metasurface for high-precision detection of large unilamellar vesicles. J. Opt. 23 , 114002 (2021)..
Chin, L. K. et al. Plasmonic sensors for extracellular vesicle analysis: from scientific development to translational research. ACS Nano 14 , 14528–14548 (2020)..
De Leebeeck, A. et al. On-chip surface-based detection with nanohole arrays. Anal. Chem. 79 , 4094–4100 (2007)..
Brolo, A. G. et al. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20 , 4813–4815 (2004)..
Cunningham, B. et al. Colorimetric resonant reflection as a direct biochemical assay technique. Sens. Actuators B: Chem. 81 , 316–328 (2002)..
Pitruzzello, G. & Krauss, T. F. Photonic crystal resonances for sensing and imaging. J. Opt. 20 , 073004 (2018)..
Drayton, A., Barth, I. & Krauss, T. F. Guided mode resonances and photonic crystals for biosensing and imaging. Semiconductors Semimet. 100 , 115–148 (2019)..
Huang, L. J. et al. Resonant leaky modes in all-dielectric metasystems: Fundamentals and applications. Phys. Rep. 1008 , 1–66 (2023)..
Prasad, A. et al. Nanohole array plasmonic biosensors: Emerging point-of-care applications. Biosens. Bioelectron. 130 , 185–203 (2019)..
Bosio, N. et al. Plasmonic versus all-dielectric nanoantennas for refractometric sensing: A direct comparison. ACS Photonics 6 , 1556–1564 (2019)..
Conteduca, D. et al. Beyond Q : the importance of the resonance amplitude for photonic sensors. ACS Photonics 9 , 1757–1763 (2022)..
Balderas-Valadez, R. F. & Pacholski, C. Plasmonic nanohole arrays on top of porous silicon sensors: a win–win situation. ACS Appl. Mater. Interfaces 13 , 36436–36444 (2021)..
Franco, A. et al. A label-free optical system with a nanohole arr ay biosensor for discriminating live single cancer cells from normal cells. Nanophotonics 11 , 315–328 (2022)..
White, I. M. & Fan, X. D. On the performance quantification of resonant refractive index sensors. Opt. Expr. 16 , 1020–1028 (2008)..
Bläsi, J. & Gerken, M. Multiplex optical biosensors based on multi-pinhole interferometry. Biomed. Opt. Expr. 12 , 4265–4275 (2021)..
Chiang, M. X., Tongpakpanang, J. & Kuo, W. K. Phase measurement of guided-mode resonance device using digital micromirror device gratings. Photonics 8 , 136 (2021)..
Barth, I. et al. Common-path interferometric label-free protein sensing with resonant dielectric nanostructures. Light Sci. Appl. 9 , 96 (2020)..
Barth, I. & Lee, H. Phase-driven progress in nanophotonic biosensing. Light Sci. Appl. 13 , 76 (2024)..
Conteduca, D. et al. Dielectric nanohole array metasurface for high-resolution near-field sensing and imaging. Nat. Commun. 12 , 3293 (2021)..
Triggs, G. J. et al. Chirped guided-mode resonance biosensor. Optica 4 , 229–234 (2017)..
Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360 , 1105–1109 (2018)..
Cetin, A. E. & Topkaya, S. N. Photonic crystal and plasmonic nanohole based label-free biodetection. Biosens. Bioelectron. 132 , 196–202 (2019)..
Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 13 , 390–396 (2019)..
Inan, H. et al. Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem. Soc. Rev. 46 , 366–388 (2017)..
Hsu, C. W. et al. Bound states in the continuum. Nat. Rev. Mater. 1 , 16048 (2016)..
Koshelev, K. et al. Asymmetric metasurfaces with high- Q resonances governed b y bound states in the continuum. Phys. Rev. Lett. 121 , 193903 (2018)..
Paddon, P. & Young, J. F. Two-dimensional vector-coupled-mode theory for textured planar waveguides. Phys. Rev. B 61 , 2090–2101 (2000)..
Ochiai, T. & Sakoda, K. Dispersion relation and optical transmittance of a hexagonal photonic crystal slab. Phys. Rev. B 63 , 125107 (2001)..
Fan, S. H. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65 , 235112 (2002)..
Lee, J. et al. Observation and differentiation of unique high- Q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett. 109 , 067401 (2012)..
Marinica, D. C., Borisov, A. G. & Shabanov, S. V. Bound states in the continuum in photonics. Phys. Rev. Lett. 100 , 183902 (2008)..
Romano, S. et al. Ultrasensitive surface refractive index imaging based on quasi-bound states in the continuum. ACS Nano 14 , 15417–15427 (2020)..
Block, I. D., Chan, L. L. & Cunningham, B. T. Photonic crystal optical biosensor incorporating structured low-index porous dielectric. Sens. Actuators B: Chem. 120 , 187–193 (2006)..
Hu, J. et al. Rapid genetic screening with high quality factor metasurfaces. Nat. Commun. 14 , 4486 (2023)..
Li, G. Y. & Liu, Y. H. Homogeneous and significant near-field enhancement in all-dielectric metasurfaces for sensing applications. Adv. Opt. Mater. 12 , 2470069 (2024)..
Yesilkoy, F. et al. Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. Light Sci. Appl. 7 , 17152 (2018)..
Soler, M. et al. How nanophotonic label-free biosensors can contribute to rapid and massive diagnostics of respiratory virus infections: COVID-19 case. ACS Sens. 5 , 2663–2678 (2020)..
Zhu, Y. Z. et al. State of the art in integrated biosensors for organ-on-a-chip applications. Curr. Opin. Biomed. Eng. 19 , 100309 (2021)..
Taha, B. A. et al. Next-generation nanophotonic-enabled biosensors for intelligent diagnosis of SARS-CoV-2 variants. Sci. Total Environ. 880 , 163333 (2023)..
Cetin, A. E. et al. Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing. ACS Photonics 2 , 1167–1174 (2015)..
Ferguson, S., Yang, K. S. & Weissleder, R. Single extracellular vesicle analysis for early cancer detection. Trends Mol. Med. 28 , 681–692 (2022)..
Bordanaba-Florit, G. et al. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat. Protoc. 16 , 3163–3185 (2021)..
Zhai, C. H. et al. Correlation between membrane proteins and sizes of extracellular vesicles and particles: a potential signature for cancer diagnosis. J. Extracell. Vesicles 12 , 12391 (2023)..
Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32 , 490–495 (2014)..
Zhu, S. Y. et al. Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor. Nanoscale 10 , 19927–19936 (2018)..
Bakshi, S. et al. Bio-inspired polydopamine layer as a versatile functionalisation protocol for silicon-based photonic biosensors. Talanta 268 , 125300 (2024)..
Reiner, A. T. et al. Magnetic nanoparticle-enhanced surface plasmon resonance biosensor for extracellular vesicle analysis. Analyst 142 , 3913–3921 (2017)..
Fraser, K. et al. Characterization of single microvesicles in plasma from glioblastoma patients. Neuro-Oncol. 21 , 606–615 (2019)..
Lee, K. et al. Multiplexed profiling of single extracellular vesicles. ACS Nano 12 , 494–503 (2018)..
Inglis, H. C. et al. Techniques to improve detection and analysis of extracellular vesicles using flow cytometry. Cytom. Part A 87 , 1052–1063 (2015)..
Zhang, J. et al. Extracellular vesicles: techniques and biomedical applications related to single vesicle analysis. ACS Nano 17 , 17668–17698 (2023)..
Tatischeff, I. et al. Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. J. Extracell. Vesicles 1 , 19179 (2012)..
Daaboul, G. G. et al. Digital detection of exosomes by interferometric imaging. Sci. Rep. 6 , 37246 (2016)..
Ortiz-Orruño, U. et al. Precise nanosizing with high dynamic range holography. Nano Lett. 21 , 317–322 (2021)..
Yang, Z. J. et al. Ultrasensitive single extracellular vesicle detection using high throughput droplet digital enzyme-linked immunosorbent assay. Nano Lett. 22 , 4315–4324 (2022)..
Liang, K. et al. Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat. Biomed. Eng. 1 , 0021 (2017)..
Stollmann, A. et al. M olecular fingerprinting of biological nanoparticles with a label-free optofluidic platform. Nat. Commun. 15 , 4109 (2024)..
Avci, O. et al. Interferometric reflectance imaging sensor (IRIS)—a platform technology for multiplexed diagnostics and digital detection. Sensors 15 , 17649–17665 (2015)..
Yang, Y. T. et al. Interferometric plasmonic imaging and detection of single exosomes. Proc. Natl. Acad. Sci. USA 115 , 10275–10280 (2018)..
Taylor, R. W. & Sandoghdar, V. Interferometric scattering microscopy: seeing single nanoparticles and molecules via Rayleigh scattering. Nano Lett. 19 , 4827–4835 (2019)..
Kashkanova, A. D. et al. Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nat. Methods 19 , 586–593 (2022)..
Küppers, M. et al. Confocal interferometric scattering microscopy reveals 3D nanoscopic structure and dynamics in live cells. Nat. Commun. 14 , 1962 (2023)..
Liebel, M. et al. 3D tracking of extracellular ves icles by holographic fluorescence imaging. Sci. Adv. 6 , eabc2508 (2020)..
Ciaparrone, G. et al. Label-free cell classification in holographic flow cytometry through an unbiased learning strategy. Lab on a Chip 24 , 924–932 (2024)..
Yang, Y. T. et al. Multifunctional detection of extracellular vesicles with surface plasmon resonance microscopy. Anal. Chem. 92 , 4884–4890 (2020)..
Panagopoulou, M. S. et al. Phenotypic analysis of extracellular vesicles: a review on the applications of fluorescence. J. Extracell. Vesicles 9 , 1710020 (2020)..
Jeong, M. H. et al. Plasmon‐enhanced single extracellular vesicle analysis for cholangiocarcinoma diagnosis. Adv. Sci. 10 , 2205148 (2023)..
Romano, S. et al. Surface-enhanced Raman and fluorescence spectroscopy with an all-dielectric metasurface. J. Phys. Chem. C. 122 , 19738–19745 (2018)..
Valsecchi, C., Gomez Armas, L. E. & Weber de Menezes, J. Large area nanohole arrays for sensing fabricated by interference lithography. Sensors 19 , 2182 (2019)..
Oh, D. K. et al. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Front. Optoelectron. 14 , 229–251 (2021)..
Seo, J. H. et al. Nanopatterning by laser interference lithography: applications to optical devices. J. Nanosci. Nanotechnol. 14 , 1521–1532 (2014)..
Harder, P. et al. Molecular conformation in oligo (ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J. Phys. Chem. B 102 , 426–436 (1998)..
Latour, R. A. Fundamental principles of the thermodynamics and kinetics of protein adsorption to material surfaces. Colloids Surf. B: Biointerfaces 191 , 110992 (2020)..
Nagasaki, Y. Construction of a densely poly(ethylene glycol)-chain-tethered surface and its performance. Polym. J. 43 , 949–958 (2011)..
Landeros, C. et al. Deep learning pipeline for automated cell profiling from cyclic imaging. Sci. Rep. 14 , 23600 (2024)..
Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19 , 1634–1641 (2022)..
Weissleder, R. & Lee, H. Automated molecular-image cytometry and analysis in modern oncology. Nat. Rev. Mater. 5 , 409–422 (2020)..
Van Valen, D. A. et al. Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput. Biol. 12 , e1005177 (2016)..
Blume, J. E. et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat. Commun. 11 , 3662 (2020)..
Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteom. 1 , 845–867 (2002)..
Barth, I. Common-path interferometric sensing with resonant dielectric nanostructures. PhD thesis, University of York, York, 2021.
Guang, J. Y. et al. Visible light-illuminated gold nanohole arrays with tunable on-chip plasmonic sensing properties. Photonic Sens. 14 , 240311 (2024)..
Dastjerdi, H. M. et al. Optimized analysis for sensitive detection and analysis of single proteins via interferometric scattering microscopy. J. Phys. D Appl. Phys. 55 , 054002 (2022)..
Li, N. T. et al. Photonic resonator interferometric scattering microscopy. Nat. Commun. 12 , 1744 (2021)..
Wallucks, A. et al. Size photometry and fluorescence imaging of immobilized immersed extracellular vesicles. J. Extracell. Vesicles 13 , e12512 (2024)..
Iwanaga, M. All-dielectric metasurface fluorescence biosensors for high-sensitivity antibody/antigen detection. ACS Nano 14 , 17458–17467 (2020)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution