
无数据
1.Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
2.University of Chinese Academy of Sciences, Beijing, China
Xiaojuan Sun (sunxj@ciomp.ac.cn)
Dabing Li (lidb@ciomp.ac.cn)
Received:17 December 2024,
Revised:2025-04-14,
Accepted:23 April 2025,
Published Online:30 June 2025,
Published:30 September 2025
Scan QR Code
Sun, R. et al. Phase-pure ferroelectric quantum wells with tunable photoluminescence for multi-state optoelectronic applications. Light: Science & Applications, 14, 2422-2432 (2025).
Sun, R. et al. Phase-pure ferroelectric quantum wells with tunable photoluminescence for multi-state optoelectronic applications. Light: Science & Applications, 14, 2422-2432 (2025). DOI: 10.1038/s41377-025-01874-2.
Quasi-two-dimensional (quasi-2D) metal halide perovskite (MHP) ferroelectrics
characterized by spontaneous polarization and semiconducting properties
hold promise for functional photoferroelectrics in applications such as optical storage and in-memory computing. However
typical quasi-2D perovskite films contain multiple quantum wells with random width distribution
which degrade optoelectronic properties and spontaneous polarization. Here
we introduce phase-pure quantum wells with uniform well width by incorporating the inorganic salt MnBr
2
which effectively controls crystallization kinetics and restricts the nucleation of high n-phases
producing high-quality films. The resulting (BA)
2
CsPb
2
Br
7
(BA = C
4
H
9
NH
3
) film demonstrates ferroelectric hysteresis behavior
clear in-plane ferroelectric domain switching
and a high photoluminescence quantum efficiency (PLQE) of 88.7%. Significantly
we observed a nonvolatile
reversible in situ photoluminescence (PL) modulation of Mn
2+
in this ferroelectric MHP film under an applied electric field
attributed to lattice distortion from ferroelectric polarization orientation. These findings enabled the development of a simple system comprising gallium nitride (GaN) light emitting diodes (LEDs) and ferroelectric films to implement multi-state signal encoding and a logic AND gate. This work advances the fabrication of efficient ferroelectric MHP films and highlights their potential for advanced optoelectr
onic applications.
Bian, R. J. et al. Developing fatigue-resistant ferroelectrics using interlayer sliding switching. Science 385 , 57–62 (2024)..
Wang, N. et al. Molecular engineering regulation achieving out-of-plane polarization in rare-earth hybrid double perovskites for ferroelectrics and circularly polarized luminescence. Angew. Chem. Int. Ed. 63 , e202409796 (2024)..
Xie, Z. W. et al. Nonvolatile and reconfigurable two-terminal electro-optic duplex memristor based on Ⅲ-nitride semiconductors. Light Sci. Appl. 13 , 78 (2024)..
Liu, M. R. et al. Effect and regulation mechanism of post-deposition annealing on the ferroelectric properties of AlScN thin films. ACS Appl. Mater. Interfaces 16 , 16427–16435 (2024)..
Kreisel, J., Alexe, M. & Thomas, P. A. A photoferroelectric material is more t han the sum of its parts. Nat. Mater. 11 , 260–260 (2012)..
Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5 , 143–147 (2010)..
Huang, H. T. Ferroelectric photovoltaics. Nat. Photonics 4 , 134–135 (2010)..
Chen, C. S. et al. Emerging 2D ferroelectric devices for in-sensor and in-memory computing. Adv. Mater. 37 , 2400332 (2025)..
Wu, G. J. et al. Author correction: ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 23 , 723–723 (2024)..
Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358 , 136–138 (1992)..
Ji, D. X. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570 , 87–90 (2019)..
Dong, H. et al. Metal Halide Perovskite for next-generation optoelectronics: progresses and prospects. eLight 3 , 3 (2023)..
Quan, L. N. et al. Perovskites for light emission. Adv. Mater. 30 , 1801996 (2018)..
Chen, P. et al. The promise and challenges of inverted perovskite solar cells. Chem. Rev. 124 , 10623–10700 (2024)..
Jiang, K. et al. Quantum engineering of non-equilibrium efficient p-doping in ultra-wide band-gap nitrides. Light Sci. Appl. 10 , 69 (2021)..
Jiang, N. L. et al. Plasmonic-enhanced efficiency of AlGaN-based deep ultraviolet LED by graphene/Al nanoparticles/graphene hybrid structure. Opt. Lett. 48 , 3175–3178 (2023)..
Liu, K. X. et al. Highly reflective Ni/Pt/Al p-electrode for improving the efficiency of an AlGaN-based deep ultraviolet light-emitting diode. Opt. Lett. 49 , 4030–4033 (2024)..
Mo, Q. H. et al. Highly efficient and ultra-broadband yellow emission of lead-free antimony halide toward white light-emitting diodes and visible light communication. Laser Photonics Rev. 16 , 2100600 (2022)..
Jin, M. Y. et al. Signal transmission of 4 GHz beyond the system bandwidth in UV-C LED communication based on temporal ghost imaging. Chin. Opt. Lett. 19 , 110602 (2021)..
Zhang, L. et al. High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light Sci. Appl. 10 , 61 (2021)..
Ricciardulli, A. G. et al. Emerging perovskite monolayers. Nat. Mater. 20 , 1325–1336 (2021)..
Pan, D. X. et al. Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden–Popper halide perovskites. Nat. Nanotechnol. 16 , 159–165 (2021)..
Zhang, W. C., Hong, M. C. & Luo, J. H. Halide double perovskite ferroelectrics. Angew. Chem. Int. Ed. 59 , 9305–9308 (2020)..
Zheng, W. L. et al. Emerging halide perovskite ferroelectrics. Adv. Mater. 35 , 2205410 (2023)..
Zhang, Y. et al. Ferroelectricity in a semiconducting all-inorganic halide perovskite. Sci. Adv. 8 , eabj5881 (2022)..
Chen, B. et al. Surface crystallization modulation toward highly-oriented and phase-pure 2D perovskite solar cells. Adv. Mater. 36 , 2312054 (2024)..
Liang, C. et al. Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6 , 38–45 (2021)..
Qi, Z. F. et al. Tailoring phase distribution of quasi-2D perovskites via taurine-assistance enables efficient blue light-emitting diodes. Small 20 , 2304821 (2024)..
Kong, L. M. et al. Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat. Commun. 12 , 1246 (2021)..
He, T. W. et al. Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nat. Commun. 11 , 1672 (2020)..
Noel, N. K. et al. Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics. Joule 1 , 328–343 (2017)..
Wang, J. Q. et al. Ultrasensitive polarized-light photodetectors based on 2D hybrid perovskite ferroelectric crystals with a low detection limit. Sci. Bull. 66 , 158–163 (2021)..
Liu, W. et al. Efficient perovskite solar cells fabricated by manganese cations incorporated in hybrid perovskites. J. Mater. Chem. C. 7 , 11943–11952 (2019)..
Jiang, Y. Z., Wei, J. L. & Yuan, M. J. Energy-funneling process in quasi-2D perovskite light-emitting diodes. J. Phys. Chem. Lett. 12 , 2593–2606 (2021)..
Dong, Q. F. et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH 3 NH 3 PbI 3 single crystals. Science 347 , 967–970 (2015)..
Liu, Z. H. et al. Chemical reduction of intrinsic defects in thicker heterojunction planar perovskite solar cells. Adv. Mater. 29 , 1606774 (2017)..
Zhang, Q. et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26 , 6238–6245 (2016)..
Li, Z. C. et al. Highly luminescent and ultrastable CsPbBr 3 perovskite quantum dots incorporated into a silica/alumina monolith. Angew. Chem. Int. Ed. 56 , 8134–8138 (2017)..
Guo, L. J. et al. A self-powered UV photodetector with ultrahigh responsivity based on 2D perovskite ferroelectric films with mixed spacer cations. Adv. Mater. 35 , 2301705 (2023)..
Zhang, Y. J., Wang, J. & Ghosez, P. Unraveling the suppression of oxygen octahedra rotations in A 3 B 2 O 7 ruddlesden-popper compounds: engineering multiferroicity and beyond. Phys. Rev. Lett. 125 , 157601 (2020)..
Ghasemi Hajiabadi, M., Zamanian, M. & Souri, D. Williamson-Hall analysis in evaluation of lattice strain and the density of lattice dislocation for nanometer scaled ZnSe and ZnSe: Cu particles. Ceram. Int. 45 , 14084–14089 (2019)..
Shi, Y. et al. Bandgap narrowing and piezochromism ofdoped two-dimensional hybrid perovskite nanocrystals under pressure. J. Mater. Chem. C. 11 , 1726–1732 (2023)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621