无数据
1.Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou, China
2.College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
3.Hefei National Laboratory, Hefei, China
Da-Wei Wang (dwwang@zju.edu.cn)
Published Online:22 May 2025,
Published:31 August 2025
Scan QR Code
Wang, D. W. Quantum computing predicts particle trajectories in optical tweezers. Light: Science & Applications, 14, 2074-2076 (2025).
Wang, D. W. Quantum computing predicts particle trajectories in optical tweezers. Light: Science & Applications, 14, 2074-2076 (2025). DOI: 10.1038/s41377-025-01879-x.
A recent study demonstrated advancements in quantum computing by applying it to address a non-Hermitian optical manipulation problem. The emergence of exceptional points and the dynamics of optically trapped single or multiple particles were simulated using a quantum computing approach.
Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93 , 015005 (2021)..
Ding, K., Fang, C. & Ma, G. C. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4 , 745–760 (2022)..
Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349 , 47–50 (2015)..
Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics 11 , 752–762 (2017)..
El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14 , 11–19 (2018)..
Miri, M. A. & Alù, A. Exceptional points in optics and photonics. Science 363 , eaar7709 (2019)..
Tang, W. Y. et al. Exceptional nexus with a hybrid topological invariant. Science 370 , 1077–1080 (2020)..
Lu, J. Y. et al. Non-Hermitian topological phononic metamaterials. Adv. Mater. https://doi.org/10.1002/adma.202307998 (2023).
Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8 , 821–829 (2014)..
Okuma, N. et al. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124 , 086801 (2020)..
Li, X. et al. Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters. Nat. Commun. 12 , 6597 (2021)..
Li, X., Cao, Y. Y. & Ng, J. Non-Hermitian non-equipartition theory for trapped particles. Nat. Commun. 15 , 1963 (2024)..
Rieser, J. et al. Tunablelight-induced dipole-dipole interaction between optically levitated nanoparticles. Science 377 , 987–990 (2022)..
Reisenbauer, M. et al. Non-Hermitian dynamics and non-reciprocity of optically coupled nanoparticles. Nat. Phys. 20 , 1629–1635 (2024)..
Liška, V. et al. PT-like phase transition and limit cycle oscillations in non-reciprocally coupled optomechanical oscillators levitated in vacuum. Nat. Phys. 20 , 1622–1628 (2024)..
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86 , 153–185 (2014)..
Li, J. M. et al. Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms. Nat. Commun. 10 , 855 (2019)..
Naghiloo, M. et al. Quantum state tomography across the exceptional point in a single dissipative qubit. Nat. Phys. 15 , 1232–1236 (2019)..
Wu, Y. et al. Observation of parity-time symmetry breaking in a single-spin system. Science 364 , 878–880 (2019)..
Fan, Y. A. et al. Solving non-Hermitian physics for optical manipulation on a quantum computer. Light Sci. Appl. 14 , 132 (2025)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution