无数据
1.Department of Physics and Department of Semiconductor Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
2.Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
3.Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
4.Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, Republic of Korea
Kyoung-Duck Park (parklab@postech.ac.kr)
Published Online:20 June 2025,
Published:31 August 2025
Scan QR Code
Ryu, J. W. & Park, K. D. Nanoscale ultrafast camera unveils light-matter dynamics in real time and space. Light: Science & Applications, 14, 2079-2081 (2025).
Ryu, J. W. & Park, K. D. Nanoscale ultrafast camera unveils light-matter dynamics in real time and space. Light: Science & Applications, 14, 2079-2081 (2025). DOI: 10.1038/s41377-025-01908-9.
Ultrafast tip-based microscopy has evolved to meet three critical parameters in optical characterization: spatial
spectral
and temporal resolution. This advancement provides deep insights into light-matter interactions in both real time and real space. In particular
it allows direct observation of polaritons
quantum states
and nonequilibrium dynamics
especially in low-dimensional quantum materials.
Abbe, E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch. Mikroskopische Anat. 9 , 413–468 (1873)..
Park, K. D. et al. Hybrid tip-enhanced nanospectroscopy and nanoimaging of monolayer WSe 2 with local strain control. Nano Lett. 16 , 2621–2627 (2016)..
Stöckle, R. M. et al. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318 , 131–136 (2000)..
Höppener, C. et al. Tip-enhanced Raman scattering. Nat. Rev. Methods Prim. 4 , 47 (2024)..
Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 362 , 7 87–805 (2004)..
Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photonics 4 , 83–91 (2010)..
Ermushev, A. V. et al. Surface enhancement of local optical fields and the lightning-rod effect. Quantum Electron. 23 , 435–440 (1993)..
Raschke, M. B. & Lienau, C. Apertureless near-field optical microscopy: tip–sample coupling in elastic light scattering. Appl. Phys. Lett. 83 , 5089–5091 (2003)..
Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399 , 134–137 (1999)..
Koo, Y. et al. Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. Light Sci. Appl. 13 , 30 (2024)..
Jaculbia, R. B. et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat. Nanotechnol. 15 , 105–110 (2020)..
Park, K. D. et al. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. Nat. Nanotechnol. 13 , 59–64 (2018)..
Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590 , 405–409 (2021)..
Orsini, L. et al. Deep subwavelength topological edge state in a hyperbolic medium. Nat. Nanotechnol. 19 , 1485–1490 (2024)..
Dapolito, M. et al. Infrared nano-imaging of Dirac magnetoexcitons in graphene. Nat. Nanotechnol. 18 , 1409–1415 (2023)..
Lee, H. et al. Electrically tunable single polaritonic quantum dot at room temperature. Phys. Rev. Lett. 132 , 133001 (2024)..
Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11 , 124–130 (2015)..
Mahmood, F. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12 , 306–310 (2016)..
Zhao, Z. C. et al. Applications of ultrafast nano-spectroscopy and nano-imaging with tip-based microscopy. eLight 5 , 1 (2025)..
Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89 , 101124 (2006)..
Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93 , 137404 (2004)..
Ropers, C. et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett. 7 , 2784–2788 (2007)..
Cocker, T. L. et al. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539 , 263–267 (2016)..
Gutzler, R. et al. Light–matter intera ction at atomic scales. Nat. Rev. Phys. 3 , 441–453 (2021)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution