
无数据
1.Department of Chemistry, University of California, San Diego, La Jolla, CA 92093, USA
2.Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
3.Department of Electrical and Computer Science Engineering, University of California, San Diego, La Jolla, CA 92093, USA
Wei Xiong (w2xiong@ucsd.edu)
Published Online:22 August 2025,
Published:30 September 2025
Scan QR Code
Yu, C. C., Jing, Y. C. & Xiong, W. Tip-enhanced nanocavities amplify the sum frequency generation. Light: Science & Applications, 14, 2373-2375 (2025).
Yu, C. C., Jing, Y. C. & Xiong, W. Tip-enhanced nanocavities amplify the sum frequency generation. Light: Science & Applications, 14, 2373-2375 (2025). DOI: 10.1038/s41377-025-01946-3.
Tip-enhanced vibrational sum frequency generation (VSFG) spectroscopy is proposed and demonstrated. Incorporation with the plasmon cavities leads to significant signal amplification—up to 14 orders of magnitude.
Shen, Y. R. Fundamentals of Sum-Frequency Spectroscopy https://doi.org/10.1017/CBO9781316162613 https://doi.org/10.1017/CBO9781316162613 .(Cambridge University Press, 2016)..
Zhu, X. D., Suhr, H. & Shen, Y. R. Surface vibrational spectroscopy by infrared-visible sum frequency generation. Phys. Rev. B 35 , 3047–3050 (1987)..
Morita, A. Theory of Sum Frequency Generation Spectroscopy (Springer, 2018).
Tang, F. J. et al. Molecular structure and modeling of water–air and ice–air interfaces monitored by sum-frequency generation. Chem. Rev. 120 , 3633–3667 (2020)..
Walter, S. R. et al. In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors: origin and control of large performance sensitivities. J. Am. Chem. Soc. 134 , 11726–11733 (2012)..
Xiang, B. et al. Ultrafast direct electron transfer at organic semiconductor and metal interfaces. Sci. Adv. 3 , e1701508 (2017)..
Ge, A. M. et al. Heterogenized molecular catalysts: vibrational sum-frequency spectroscopic, electrochemical, and theoretical investigations. Acc. Chem. Res. 52 , 1289–1300 (2019)..
Xiao, M. Y. et al. Understanding molecular structures of buried interfaces in halide perovskite photovoltaic devices nondestructively with sub-monolayer sensitivity using sum frequency generation vibrational spectroscopy. Adv. Energy Mater. 10 , 1903053 (2020)..
Guo, W. et al. Probing orientations and conformations of peptides and proteins at buried interfaces. J. Phys. Chem. Lett. 12 , 10144–10155 (2021)..
Yan, E. C. Y. et al. Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy. Chem. Rev. 114 , 8471–8498 (2014)..
Pickering, J. D. et al. Tutorials in vibrational sum frequency generation spectroscopy. Ⅱ. Designing a broadband vibrational sum frequency generation spectrometer. Biointerphases 17 , 011202 (2022)..
Chen, W. et al. Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374 , 1264–1267 (2021)..
Xomalis, A. et al. D etecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science 374 , 1268–1271 (2021)..
Baumberg, J. J. et al. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18 , 668–678 (2019)..
Roelli, P. et al. In-operando control of sum-frequency generation in tip-enhanced nanocavities. Light Sci. Appl. 14 , 203 (2025)..
Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 362 , 787–805 (2004)..
Wang, H. Y. & Xiong, W. Vibrational sum-frequency generation hyperspectral microscopy for molecular self-assembled systems. Annu. Rev. Phys. Chem. 72 , 279–306 (2021)..
Shah, S. A. & Baldelli, S. Chemical imaging of surfaces with sum frequency generation vibrational spectroscopy. Acc. Chem. Res. 53 , 1139–1150 (2020)..
Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89 , 1011 24 (2006)..
Wang, H. Y., Gao, T. & Xiong, W. Self-phase-stabilized heterodyne vibrational sum frequency generation microscopy. ACS Photonics 4 , 1839–1845 (2017)..
Nihonyanagi, S. et al. Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Annu. Rev. Phys. Chem. 64 , 579–603 (2013)..
Shen, Y. R. Phase-sensitive sum-frequency spectroscopy. Annu. Rev. Phys. Chem. 64 , 129–150 (2013)..
Wang, C. L. et al. Direct interfacial charge transfer in all-polymer donor–acceptor heterojunctions. J. Phys. Chem. Lett. 13 , 8733–8739 (2022)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621