
无数据
1.Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
2.State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
3.Wellman Center for Photomedicine, Massachusetts General Brigham, Harvard Medical School, Havard University, Cambridge, MA, USA
Zhitao Zhang (zhangzhitao@sjtu.edu.cn)
Mei X. Wu (mwu5@mgh.harvard.edu)
Min Lu (lumin111@sjtu.edu.cn)
Received:18 December 2024,
Revised:2025-07-10,
Accepted:25 July 2025,
Published Online:15 September 2025,
Published:30 November 2025
Scan QR Code
Wang, C. X. et al. Challenges and opportunities in next-generation LED therapeutic devices. Light: Science & Applications, 14, 3352-3376 (2025).
Wang, C. X. et al. Challenges and opportunities in next-generation LED therapeutic devices. Light: Science & Applications, 14, 3352-3376 (2025). DOI: 10.1038/s41377-025-01990-z.
Phototherapy offers advantages of non-invasiveness
cost-effectiveness
localized treatment
and potential for home-based care across various medical conditions. However
its adoption is hindered by the large size
limited safety
and professional operation requirements of current phototherapeutic devices. Unlike bulky laser phototherapeutic devices
wearable and implantable LED-based devices overcome these limitations
offering improved safety
portability
and uniform light distribution
making them promising prototypes for next-generation phototherapies. This review explores the home-care potentials of phototherapy from a clinical application perspective and provides a comprehensive overview of its therapeutic mechanisms and diverse applications. By synthesizing the latest advancements and cutting-edge research
we identify key clinical challenges associated with wearable and implantable phototherapy devices and propose fundamental strategies to address these limitations
such as miniaturization
biocompatibility
and energy efficiency. Furthermore
we draw on interdisciplinary cutting-edge research to address the challenges faced by phototherapy devices. We also emphasize the critical value of integrating artificial intelligence (AI) and flexible sensing technologies within phototherapy systems. Specific methods and potential applications are discussed for effectively integrating phototherapy systems with AI algorithms to establish a closed-loop diagnostic and therapeutic system. Grounded in clinical applications
we outline concrete research directions for developing next-generation LED-based phototherapy devices. This review delivers valuable insights for clinicians leveraging phototherapy and offers a roadmap for researchers in material science
flexible electronics
and AI
fostering interdisciplinary innovations to advance future phototherapy applications.
Li, X. S. et al. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol . 17 , 657–674 (2020)..
Finsen, N. R. Phototherapy (Edward Arnold Publishers Ltd., 1901).
Maiman, T. H. Stimulated optical radiation in ruby. Nature 187 , 493–494 (1960)..
Batta, K. et al. Randomised controlled study of early pulsed dye laser treatment of uncomplicated childhood haemangiomas: results of a 1-year analysis. Lancet 360 , 521–527 (2002)..
Dolmans, D. E. J. G. J., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 3 , 380–387 (2003)..
Seaton, E. D. et al. Pulsed-dye laser treatment for inflammatory acne vulgaris: randomised controlled trial. Lancet 362 , 1347–1352 (2003)..
Lu, M. et al. Bacteria-specific phototoxic reactions triggered by blue light and phytochemical carvacrol. Sci. Transl. Med . 13 , eaba3571 (2021)..
Kim, T. I. et al. Refractive surgery. Lancet 393 , 2085–2098 (2019)..
Anderson, R. R. & Parrish, J. A. Sel ective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220 , 524–527 (1983)..
Parker, T. et al. Gamma knife radiosurgery for uveal melanomas and metastases: a systematic review and meta-analysis. Lancet Oncol . 21 , 1526–1536 (2020)..
Ho, P. W. L., Szeto, C. C. & Chow, K. M. Continuous glucose monitoring device causes consternation on chest x-ray. Lancet 399 , 2412 (2022)..
An, L. Y. et al. Sexual dimorphism in melanocyte stem cell behavior reveals combinational therapeutic strategies for cutaneous repigmentation. Nat. Commun . 15 , 796 (2024)..
Choi, S. et al. Wearable photomedicine for neonatal jaundice treatment using blue organic light-emitting diodes (OLEDs): toward textile-based wearable phototherapeutics. Adv. Sci . 9 , 2204622 (2022)..
Stitt, A. W. et al. The progress in understanding and treatment of diabetic retinopathy. Prog. Retinal Eye Res . 51 , 156–186 (2016)..
Tang, Y. L. et al. Green light analgesia in mice is mediated by visual activation of enkephalinergic neurons in the ventrolateral geniculate nucleus. Sci. Transl. Med . 14 , eabq6474 (2022)..
Oh, P. S. & Jeong, H. J. Therapeutic application of light emitting diode: Photo-oncomic approach. J. Photochem. Photobiol. B: Biol . 192 , 1–7 (2019)..
Lee, S. Y. et al. Combinatorial wound healing therapy using adhesive nanofibrous membrane equipped with wearable LED patches for photobiomodulation. Sci. Adv . 8 , eabn1646 (2022)..
Lee, H. E. et al. Trichogenic photostimulation using monolithic flexible vertical AlGaInP light-emitting diodes. ACS Nano 12 , 9587–9595 (2018)..
Deng, K. C. et al. A biodegradable, flexible photonic patch for in vivo phototherapy. Nat. Commun . 14 , 3069 (2023)..
Sakai, J. Functional near-infrared spectroscopy reveals brain activity on the move. Proc. Natl. Acad. Sci. USA 119 , e2208729119 (2022)..
Tomassetti, C. et al. Estimation of the endometriosis fertility index prior to operative laparoscopy. Hum. Reprod . 36 , 636–646 (2021)..
Chen, X. et al. Far infrared irradiation suppresses experimental arthritis in rats by down-regulation of genes involved inflammatory response and autoimmunity. J. Adv. Res . 38 , 107–118 (2022)..
Lee, H. E. et al. Optogenetic brain neuromodulation by stray magnetic field via flash-enhanced magneto-mechano-triboelectric nanogenerator. Nano Energy 75 , 104951 (2020)..
Rajalingham, R. et al. Chronically implantable LED arrays for behavioral optogenetics in primates. Nat. Methods 18 , 1112–1116 (2021)..
Kim, D. et al. Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proc. Natl. Acad. Sci. USA 117 , 21138–21146 (2020)..
Van Tran, V. et al. Light emitting diodes technology-based photobiomodulation therapy (PBMT) for dermatology and aesthetics: recent applications, challenges, and perspec tives. Opt. Laser Technol . 135 , 106698 (2021)..
Yang, L. D. et al. Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Transl. Neurodegeneration 9 , 19 (2020)..
Kim, W. S. et al. AI-enabled, implantable, multichannel wireless telemetry for photodynamic therapy. Nat. Commun . 13 , 2178 (2022)..
Piksa, M. et al. The role of the light source in antimicrobial photodynamic therapy. Chem. Soc. Rev . 52 , 1697–1722 (2023)..
Pham, T. C. et al. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev . 121 , 13454–13619 (2021)..
Kim, M. S. et al. Clinical validation of face-fit surface-lighting micro light-emitting diode mask for skin anti-aging treatment. Adv. Mater . 36 , 2411651 (2024)..
Zhang, H. et al. Biocompatible light guide-assisted wearable devices for enhanced UV light delivery in d eep skin. Adv. Funct. Mater . 31 , 2100576 (2021)..
Bachelez, H. et al. Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: a phase 3 randomised non-inferiority trial. Lancet 386 , 552–561 (2015)..
Jeon, Y. et al. Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine. Light Sci. Appl . 8 , 114 (2019)..
Yang, L. et al. Biofilm microenvironment triggered self-enhancing photodynamic immunomodulatory microneedle for diabetic wound therapy. Nat. Commun . 14 , 7658 (2023)..
Li, M. et al. A wearable and stretchable dual-wavelength LED device for home care of chronic infected wounds. Nat. Commun . 15 , 9380 (2024)..
Sahel, J. A. et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med . 27 , 1223–1229 (2021)..
McDonagh, A. F. Letter: phototherapy and hyper bilirubinaemia. Lancet 1 , 339 (1975)..
Figueiro Longo, M. G. et al. Effect of transcranial low-level light therapy vs sham therapy among patients with moderate traumatic brain injury: a randomized clinical trial. JAMA Netw. Open 3 , e2017337 (2020)..
Kim, J. et al. Implantable MicroLED-mediated chemo-photodynamic combination therapy for glioma treatment. Adv. Funct. Mater . 34 , 2316386 (2024)..
Hsueh, B. et al. Cardiogenic control of affective behavioural state. Nature 615 , 292–299 (2023)..
Ausra, J. et al. Wireless, fully implantable cardiac stimulationand recording with on-device computation for closed-loop pacing and defibrillation. Sci. Adv . 8 , eabq7469 (2022)..
Sim, J. H. et al. OLED catheters for inner-body phototherapy: a case of type 2 diabetes mellitus improved via duodenal photobiomodulation. Sci. Adv . 9 , eadh8619 (2023)..
Qiao, L. L. et al. A sensitiv e red/far-red photoswitch for controllable gene therapy in mouse models of metabolic diseases. Nat. Commun . 15 , 10310 (2024)..
Shao, J. W. et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med . 9 , eaal2298 (2017)..
Kawana, Y. et al. Optogenetic stimulation of vagal nerves for enhanced glucose-stimulated insulin secretion and β cell proliferation. Nat. Biomed. Eng . 8 , 808–822 (2024)..
Mansouri, M. et al. Smart-watch-programmed green-light-operated percutaneous control of therapeutic transgenes. Nat. Commun . 12 , 3388 (2021)..
Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565 , 361–365 (2019)..
Sinha, G. Trials begin for a new weapon against Parkinson’s: light. Science 369 , 1415–1416 (2020)..
Li, D. Y. et al. Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage. Nat. Commun . 14 , 6104 (2023)..
Tao, L. C. et al. Microglia modulation with 1070-nm light attenuates Aβ burden and cognitive impairment in Alzheimer’s disease mouse model. Light Sci. Appl . 10 , 179 (2021)..
Kathe, C. et al. Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nat. Biotechnol . 40 , 198–208 (2022)..
Zhang, Y. et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci. Adv . 5 , eaaw5296 (2019)..
Liu, X. Y. et al. Fatigue-resistant hydrogel optical fibers enable peripheral nerve optogenetics during locomotion. Nat. Methods 20 , 1802–1809 (2023)..
Kim, H. et al. Benefits of a skull-interfaced flexible and implantable multilight emitting diode array for photobiomodulation in ischemic stroke. Adv. Sci . 9 , e2104629 (2022)..
Hee Lee, J. et al. Implantable micro-light-emitting diode (µLED)-based optogenetic interfaces toward human applications. Adv. Drug Deliv. Rev . 187 , 114399 (2022)..
Ouyang, W. et al. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng . 7 , 1252–1269 (2023)..
Yamagishi, K. et al. Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy. Nat. Biomed. Eng . 3 , 27–36 (2019)..
Chai, R. Z. & Zhang, Y. Adaptive thermal management of implantable device. IEEE Sens. J . 19 , 1176–1185 (2019)..
Zhang, Z. et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 603 , 624–630 (2022)..
Bian, Y. Y. et al. Efficient green InP-based QD-LED by controlling electron injection and leakage. Nature 635 , 854–859 (2024)..
Lee, J. H. et al. Wearable surface-lighting micro-light-emitting diode patch for melanogenesis inhibition. Adv. Healthc. Mater . 12 , 2201796 (2023)..
Lee, J. et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron . 4 , 291–301 (2021)..
Negri, L. B. et al. An antimicrobial blue light prototype device controls infected wounds in a preclinical porcine model. J. Infect. Dis . 231 , e545–e552 (2024)..
Jung, Y. H. et al. A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat. Electron . 5 , 374–385 (2022)..
Tang, X. et al. Flexible brain-computer interfaces. Nat. Electron . 6 , 109–118 (2023)..
Cai, X. et al. A wireless optoelectronic probe to monitor oxygenation in deep brain tissue. Nat. Photonics 18 , 492–500 (2024)..
Lee, G. H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater . 5 , 149–165 (2020)..
Mariello, M. et al. Recent advances in encapsulation of flexible bioelectronic implants: materials, technologies, and characterization methods. Adv. Mater . 34 , 2201129 (2022)..
He, J. Q. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597 , 57–63 (2021)..
Zhu, G. Z. et al. Rechargeable Na/Cl 2 and Li/Cl 2 batteries. Nature 596 , 525–530 (2021)..
Davies, N. & Wilson, B. C. Interstitial in vivo ALA-PpIX mediated metronomic photodynamic therapy (mPDT) using the CNS-1 astrocytoma with bioluminescence monitoring. Photodiagn. Photodyn. Ther . 4 , 202–212 (2007)..
Davies, N. & Wilson, B. C. Tetherless fiber-coupled optical sources for extended metronomic photodynamic therapy. Photodiagn. Photodyn. Ther . 4 , 184–189 (2007)..
Tan, C. X. et al. A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun . 11 , 3530 (2020)..
Tao, P. D. et al. Enhancement of in-plane thermal conductivity of flexible boron nitride heat spreaders by micro/nanovoid filling using deformable liquid metal nanoparticles. Rare Met . 42 , 3662–3672 (2023)..
Xu, S. D. et al. Realizing a 10 ℃ cooling effect in a flexible thermoelectric cooler using a vortex generator. Adv. Mater . 34 , 2204508 (2022)..
van Erp, R. et al. Co-designing electronics with microfluidics for more sustainable cooling. Nature 585 , 211–216 (2020)..
Min, J. H. et al. An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron . 6 , 630–641 (2023)..
Tehrani, F. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng . 6 , 1214–1224 (2022)..
Xu, Y. C. et al. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat. Biomed. Eng . 7 , 1307–1320 (2023)..
Zhang, S. P. et al. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. npj Flex. Electron . 6 , 11 (2022)..
Zhou, J. et al. Multiscale and hierarchical wrinkle enhanced graphene/Ecoflex sensors integrated with human-machine interfaces and cloud-platform. npj Flex. Electron . 6 , 55 (2022)..
Zhang, L. D. et al. Advanced and readily-available wireless-powered blue-light-implant for non-invasive peri-implant disinfection. Adv. Sci . 10 , 2203472 (2023)..
Bo, R. H. et al. Mechanically-guided 3D assembly for architected flexible electronics. Chem. Rev . 123 , 11137–11189 (2023)..
Kong, M. et al. Transparent omni-directional stretchable circuit lines made by a junction-free grid of expandable Au lines. Adv. Mater . 33 , 2 100299 (2021)..
Shen, Q. C. et al. Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 379 , 488–493 (2023)..
Lee, W. et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science 378 , 637–641 (2022)..
Liu, S. L. Z., Shah, D. S. & Kramer-Bottiglio, R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat. Mater . 20 , 851–858 (2021)..
Zheng, Y. et al. Environmentally stable and stretchable polymer electronics enabled by surface-tethered nanostructured molecular-level protection. Nat. Nanotechnol . 18 , 1175–1184 (2023)..
Min, H. et al. Additive treatment yields high-performance lead-free perovskite light-emitting diodes. Nat. Photonics 17 , 755–760 (2023)..
Su, R. T. et al. 3D-printed flexible organic light-emitting diode displays. Sci. Adv . 8 , eabl8798 (2022)..
Chen, C. S. et al. Perovskite solar cells based on screen-printed thin films. Nature 612 , 266–271 (2022)..
Wang, S. C. et al. Inkjet-printed xerogel scaffolds enabled room-temperature fabrication of high-quality metal electrodes for flexible electronics. Adv. Funct. Mater . 32 , 2203730 (2022)..
Liu, G. Q. et al. Evolution of dip-pen nanolithography (DPN): from molecular patterning to materials discovery. Chem. Rev . 120 , 6009–6047 (2020)..
Lee, J. H. et al. Deeply implantable, shape-morphing, 3D MicroLEDs for pancreatic cancer therapy. Adv. Mater . https://doi.org/10.1002/adma.202411494 (2024).
Lin, Q. H. et al. Flexible quantum dot light-emitting device for emerging multifunctional and smart applications. Adv. Mater . 35 , 2210385 (2023)..
Jang, E. & Jang, H. Review: quantum dot light-emitting diodes. Chem. Rev . 123 , 4663–4692 (2023)..
Zhao, H. N. et al. Stable blue phosphorescent organic LEDs that use polariton-enhanced Purcell effects. Nature 626 , 300–305 (2024)..
Cho, H. H. et al. Suppression of Dexter transfer by covalent encapsulation for efficient matrix-free narrowband deep blue hyperfluorescent OLEDs. Nat. Mater . 23 , 519–526 (2024)..
Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586 , 385–389 (2020)..
Ryu, J. E. et al. Technological breakthroughs in chip fabrication, transfer, and color conversion for high-performance micro-LED displays. Adv. Mater . 35 , 2204947 (2023)..
Chang, W. et al. Concurrent self-assembly of RGB microLEDs for next-generation displays. Nature 617 , 287–291 (2023)..
Huang, J. S. et al. Near-infrared photodynamic chemiluminescent probes for cancer therapy and metastasis detection. Angew. Chem. Int. Ed . 62 , e202303982 (2023)..
Keum, C. et al. A substrateless, flexible, and water-resistant organic light-emitting diode. Nat. Commun . 11 , 6250 (2020)..
Kim, J. H. & Park, J. W. Intrinsically stretchable organic light-emitting diodes. Sci. Adv . 7 , eabd9715 (2021)..
Huang, T. Y. et al. Delocalizing electron distribution in thermally activated delayed fluorophors for high-efficiency and long-lifetime blue electroluminescence. Nat. Mater . 23 , 1523–1530 (2024)..
Hua, T. et al. Deep-blue organic light-emitting diodes for ultrahigh-definition displays. Nat. Photonics 18 , 1161–1169 (2024)..
Zhao, H. N., Arneson, C. E. & Forrest, S. R. Stable, deep blue tandem phosphorescent organic light-emitting diode enabled by the double-sided polariton-enhanced Purcell effect. Nat. Photonics 19 , 607–614 (2025)..
Tankelevičiūtė, E., Samuel, I. D. W. & Zysman-Colman, E. The blue problem: OLED stability and degradation me chanisms. J. Phys. Chem. Lett . 15 , 1034–1047 (2024)..
Choi, D. K. et al. Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO 3 /Au/MoO 3 electrode with encapsulation. Nat. Commun . 12 , 2864 (2021)..
Cha, G. D., Kim, D. H. & Kim, D. C. Wearable and implantable light-emitting diodes and their biomedical applications. Korean J. Chem. Eng . 41 , 1–24 (2024)..
Chen, H. et al. Flexible quantum dot light-emitting devices for targeted photomedical applications. J. Soc. Inf. Disp . 26 , 296–303 (2018)..
Chen, H. et al. Quantum dot light emitting devices for photomedical applications. J. Soc. Inf. Disp . 25 , 177–184 (2017)..
Kim, Y. W. et al. Wearable quantum dots organic light-emitting diodes patch for high-power near infra-red photomedicene with real-time wavelength control. Chem. Eng. J . 499 , 156121 (2024)..
Tri, T. T. et al. Maximization of cytochrome C oxidase enzyme activity by optimizing color conversion from red organic light-emitting diodes. Appl. Mater. Today 38 , 102223 (2024)..
Wang, Y. K. et al. Long-range order enabled stability in quantum dot light-emitting diodes. Nature 629 , 586–591 (2024)..
Kang, K. S. et al. Reliable high temperature, high humidity flexible thin film encapsulation using Al 2 O 3 /MgO nanolaminates for flexible OLEDs. Nano Res . 13 , 2716–2725 (2020)..
Kishore, R. A. et al. Ultra-high performance wearable thermoelectric coolers with less materials. Nat. Commun . 10 , 1765 (2019)..
Liu, H. et al. Development and evaluation of a low-cost, portable, LED-based device for PDT treatment of early-stage oral cancer in resource-limited settings. Lasers Surg. Med . 51 , 345–351 (2019)..
Lu, C. H. et al. High-performance fibre battery with polymer gel electrolyte. Nature 629 , 86–91 (2024)..
Zhang, Y. J. et al. A microscale soft lithium-ion battery for tissue stimulation. Nat. Chem. Eng . 1 , 691–701 (2024)..
Hong, Y. et al. Energetic and durable all-polymer aqueous battery for sustainable, flexible power. Nat. Commun . 15 , 9539 (2024)..
Zhang, C. et al. Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors. Nat. Commun . 11 , 58 (2020)..
Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91 , 529–539 (2016)..
Ding, H. et al. Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources. Proc. Natl Acad. Sci. USA 115 , 6632–6637 (2018)..
Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol . 33 , 1280–1286 (2015)..
Liu, Z. et al. Human motion driven self-powered photodynamic system for long-term autonomous cancer therapy. ACS Nano 14 , 8074–8083 (2020)..
Jeong, Y. C. et al. Progress in brain-compatible interfaces with soft nanomaterials. Adv. Mater . 32 , 1907522 (2020)..
Kim, T. I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340 , 211–216 (2013)..
Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater . 18 , 510–517 (2019)..
Zhang, Z. T. Light-emitting materials for wearable electronics. Nat. Rev. Mater . 7 , 839–840 (2022)..
Ma, D. X. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599 , 594–598 (2021)..
Shin, J. et al. Vertical full-colour micro-LEDs via 2D ma terials-based layer transfer. Nature 614 , 81–87 (2023)..
Kim, D. C. et al. Intrinsically stretchable quantum dot light-emitting diodes. Nat. Electron . 7 , 365–374 (2024)..
Si, M. W. et al. Scaled indium oxide transistors fabricated using atomic layer deposition. Nat. Electron . 5 , 164–170 (2022)..
Chorsi, M. T. et al. Highly piezoelectric, biodegradable, and flexible amino acid nanofibers for medical applications. Sci. Adv . 9 , eadg6075 (2023)..
Zhang, Y. P. et al. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films. Adv. Mater . 33 , 2007890 (2021)..
Sani, E. S. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv . 9 , eadf7388 (2023)..
Bidinger, S. L. et al. Pulsed transistor operation enables miniaturi zation of electrochemical aptamer-based sensors. Sci. Adv . 8 , eadd4111 (2022)..
Wu, H. et al. On-skin biosensors for noninvasive monitoring of postoperative free flaps and replanted digits. Sci. Transl. Med . 15 , eabq1634 (2023)..
Lee, J. H. et al. 3D printed, customizable, and multifunctional smart electronic eyeglasses for wearable healthcare systems and human-machine interfaces. Acs Appl. Mater. Interfaces 12 , 21424–21432 (2020)..
Kim, S. K. et al. Bimetallic nanocatalysts immobilized in nanoporous hydrogels for long-term robust continuous glucose monitoring of smart contact lens. Adv. Mater . 34 , 2110536 (2022)..
Kim, J. et al. A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure. Nat. Biomed. Eng . 5 , 772–782 (2021)..
Liu, W. J. et al. Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure. Nat. Commun . 15 , 5635 (2024)..
Cardoso, F. D. S., Gonzalez-Lima, F. & Gomes da Silva, S. Photobiomodulation for the aging brain. Ageing Res. Rev . 70 , 101415 (2021)..
Cunnane, S. C. et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov . 19 , 609–633 (2020)..
Aini, N. et al. The effects of light therapy on sleep, depression, neuropsychiatric behaviors, and cognition among people living with dementia: a meta-analysis of randomized controlled trials. Am. J. Geriatr. Psychiatry 32 , 681–706 (2024)..
Yin, L. et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron . 5 , 694–705 (2022)..
Wainwright, M. et al. Photoantimicrobials-are we afraid of the light? Lancet Infect. Dis . 17 , E49–E55 (2017)..
Ju, X. K. et al. A wearable electrostimulation-augmented ionic-gel photothermal patch doped with MXene for skin tumor treatment. Nat. Commun . 15 , 762 (2024)..
Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng . 5 , 737–748 (2021)..
Schalkamp, A. K. et al. Wearable movement-tracking data identify Parkinson’s disease years before clinical diagnosis. Nat. Med . 29 , 2048–2056 (2023)..
Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med . 26 , 418–429 (2020)..
Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363 , eaau0780 (2019)..
Inamori, G. et al. Neonatal wearable device for colorimetry-based real-time detection of jaundice with simultaneous sensing of vitals. Sci. Adv . 7 , eabe3793 (2021)..
Hillebrandt, S. et al. High brightness, highly directiona l organic light-emitting diodes as light sources for future light-amplifying prosthetics in the optogenetic management of vision loss. Adv. Opt. Mater . 11 , 2200877 (2022)..
Lee, G. H. et al. Smart wireless near-infrared light emitting contact lens for the treatment of diabetic retinopathy. Adv. Sci . 9 , 2106254 (2022)..
Sun, S. Q. et al. Red organic light-emitting diodes based photobiomodulation therapy enabling prominent hair growth. Nano Res . 16 , 7164–7170 (2023)..
Jeon, Y. et al. Parallel-stacked flexible organic light-emitting diodes for wearable photodynamic therapeutics and color-tunable optoelectronics. ACS Nano 14 , 15688–15699 (2020)..
Lian, C. et al. Flexible organic light-emitting diodes for antimicrobial photodynamic therapy. npj Flex. Electron . 3 , 18 (2019)..
Song, J. et al. Organic light-emitting diodes: pushing toward the limits and beyond. Adv. Mater . 32 , 1907539 (2020)..
Kang, S. K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530 , 71–76 (2016)..
Wang, C. H. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng . 2 , 687–695 (2018)..
Xu, C. H. et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron . 7 , 168–179 (2024)..
Juengpanich, S. et al. Pre-activated nanoparticles with persistent luminescence for deep tumor photodynamic therapy in gallbladder cancer. Nat. Commun . 14 , 5699 (2023)..
Tang, Y. F. et al. Oxygen-independent organic photosensitizer with ultralow-power NIR photoexcitation for tumor-specific photodynamic therapy. Nat. Commun . 15 , 2530 (2024)..
Chen, J. et al. Atomically precise photothermal nanomachines. Nat. Mater . 23 , 271–280 (2024)..
Zhang, Q. et al. Noninvasive low-level laser therapy for thrombocytopenia. Sci. Transl. Med . 8 , 349ra101 (2016)..
Wang, Z. H. et al. Adoptive macrophage directed photodynamic therapy of multidrug-resistant bacterial infection. Nat. Commun . 14 , 7251 (2023)..
Xiu, W. et al. Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections. Nat. Commun . 13 , 3875 (2022)..
Li, G. Q. et al. Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity. Nat. Electron . 6 , 154–163 (2023)..
Verboven, I. & Deferme, W. Printing of flexible light emitting devices: a review on different technologies and devices, printing technologies and state-of-the-art applications and future prospects. Prog. Mater. Sci . 118 , 100760 (2021)..
Koo, J. H. et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat. Electron . 6 , 137–145 (2023)..
Won, S. M. et al. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng . 7 , 405–423 (2023)..
Yang, S. L. X. et al. GSH/pH dual activatable cross-linked and fluorinated PEI for cancer gene therapy through endogenous iron De-hijacking and in situ ROS amplification. Adv. Mater . 36 , 2304098 (2024)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621