
无数据
1.The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
2.Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006 Shanxi, China
3.International Sino-Slovenian Joint Research Center on Liquid Crystal Photonics, Nankai University, Tianjin 300071, China
4.Faculty of Mathematics and Physics, University of Ljubljana, and Department of Complex Matter, J. Stefan Institute, SI-1000 Ljubljana, Slovenia
Xinzheng Zhang (zxz@nankai.edu.cn)
Zhigang Chen (zgchen@nankai.edu.cn)
Jingjun Xu (jjxu@nankai.edu.cn)
Received:27 January 2025,
Revised:2025-07-07,
Accepted:13 August 2025,
Online First:02 January 2026,
Published:28 February 2026
Scan QR Code
Wang, Y. et al. Soft-matter-based topological vertical cavity surface emitting lasers. Light: Science & Applications, 15, 439-450 (2026).
Wang, Y. et al. Soft-matter-based topological vertical cavity surface emitting lasers. Light: Science & Applications, 15, 439-450 (2026). DOI: 10.1038/s41377-025-02011-9.
Polarized topological vertical cavity surface-emitting lasers (VCSELs) are promising candidates for stable and efficient on-chip light sources
with significant potential for advancing optical storage and communication technologies. However
most semiconductor-based topological lasers rely on intricate fabrication techniques and face limitations in providing the flexibility needed for diverse device applications. By drawing an analogy to two-dimensional Semenov insulators and the quantum valley Hall effect in a synthetic parameter space
we design and realize a one-dimensional optical superlattice using stacked polymerized cholesteric liquid crystal films and Mylar films. Such a one-dimensional optical superlattice is achieved by using films spin-coated with a Pyrromethene 597 solution
thus enabling the demonstration of a structure-flexible
low threshold
and circularly-polarized topological VCSEL. We demonstrate that such a topological VCSEL maintains excellent single-mode operation at low pump power
and its spatial profile aligns closely with that of the pump laser. Thanks to the soft-matter-based metastructure
the topological laser can be “attached” to substrates of various shapes
maintaining desired laser properties and beam steering even after undergoing multiple bends. These characteristics make the demonstrated topological laser ideal for applications in consumer electronics
laser scanning
displays
and photonic wearable devices
where both flexibility and performance are crucial.
Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83 , 1057–1110 (2011)..
Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91 , 015005 (2019)..
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91 , 015006 (2019)..
Von Klitzing, K. et al. 40 y ears of the quantum Hall effect. Nat. Rev. Phys. 2 , 397–401 (2020)..
Zhang, X. J. et al. A second wave of topological phenomena in photonics and acoustics. Nature 618 , 687–697 (2023)..
Shah, T. et al. Colloquium : topologically protected transport in engineered mechanical systems. Rev. Mod. Phys. 96 , 021002 (2024)..
Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100 , 013904 (2008)..
Wang, Z. et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461 , 772–775 (2009)..
Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496 , 196–200 (2013)..
Hafezi, M. et al. Imaging topological edge states in silicon photonics. Nat. Photonics 7 , 1001–1005 (2013)..
Pr ice, H. et al. Roadmap on topological photonics. J. Phys. Photonics 4 , 032501 (2022)..
Ota, Y. et al. Active topological photonics. Nanophotonics 9 , 547–567 (2020)..
Smirnova, D. et al. Nonlinear topological photonics. Appl. Phys. Rev. 7 , 021306 (2020)..
Segev, M. & Bandres, M. A. Topological photonics: where do we go from here?. Nanophotonics 10 , 425–434 (2020)..
Chen, Z. G. & Segev, M. Highlighting photonics: looking into the next decade. eLight 1 , 2 (2021)..
Khanikaev, A. B. & Alù, A. Topological photonics: robustness and beyond. Nat. Commun. 15 , 931 (2024)..
St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics 11 , 651–656 (2017)..
Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358 , 636–640 (2017)..
Harari, G. et al. Topologicalinsulator laser: theory. Science 359 , eaar4003 (2018)..
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359 , eaar4005 (2018)..
Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Commun. 9 , 981 (2018)..
Parto, M. et al. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett. 120 , 113901 (2018)..
Zeng, Y. Q. et al. Electrically pumped topological laser with valley edge modes. Nature 578 , 246–250 (2020)..
Shao, Z. K. et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15 , 67–72 (2020)..
Zhang, W. X. et al. Low-threshold topological nanolasers based on the second-order corner state. Light Sci. Appl. 9 , 109 (2020)..
Dikopoltsev, A. et al. Topological insulator vertical-cavity laser array. Science 373 , 1514–1517 (2021)..
Yang, L. C. et al. Topological-cavity surface-emitting laser. Nat. Photonics 16 , 279–283 (2022)..
Contractor, R. et al. Scalable single-mode surface-emitting laser via open-Dirac singularities. Nature 608 , 692–698 (2022)..
Tian, J. Y. et al. Perovskite quantum dot one-dimensional topological laser. Nat. Commun. 14 , 1433 (2023)..
Wang, Y. et al. Tunable topological lasing of circularly polarized light in a soft-matter-based superlattice. Laser Photonics Rev. 17 , 2200643 (2023)..
Hwang, M. S. et al. Vortex nanolaser based on a photonic disclination cavity. Nat. Photonics 18 , 286–293 (2024)..
Leefmans, C. R. et al. Topological temporally mode-locked laser. Nat. Phys. 20 , 852–858 (2024)..
Li, Z. T ., Luo, X. W. & Gu, Q. Topological on-chip lasers. APL Photonics 8 , 070901 (2023)..
Zhou, Z. C. et al. Prospects and applications of on-chip lasers. elight 3 , 1 (2023)..
Panajotov, K. et al. Vertical-cavity surface-emitting laser emitting circularly polarized light. Laser Phys. Lett. 10 , 105003 (2013)..
Jia, X. L. et al. Metasurface reflector enables room-temperature circularly polarized emission from VCSEL. Optica 10 , 1093–1099 (2023)..
Torrelli, V. et al. On-demand polarization by a vertical-cavity surface-emitting laser with two tilted sub-wavelength gratings. Opt. Lett. 49 , 3773–3776 (2024)..
Pujol-Vila, F. et al. Soft optomechanical systems for sensing, modulation, and actuation. Adv. Funct. Mater. 33 , 2213109 (2023)..
Xie, M. Y. et al. Flexible multifunctional sensors for wearable and robotic applications. Adv. Mater. Technol. 4 , 1800626 (2019)..
Pan, J. T. et al. Nonlinear geometric phase coded ferroelectric nematic fluids for nonlinear soft-matter photonics. Nat. Commun. 15 , 8732 (2024)..
Ryabchun, A. & Bobrovsky, A. Cholesteric liquid crystal materials for tunable diffractive optics. Adv. Optical Mater. 6 , 1800335 (2018)..
Yang, D. H. et al. Dual-wavelength lasing with orthogonal circular polarizations generated in a single layer of a polymer–cholesteric liquid crystal superstructure. Polymers 15 , 1226 (2023)..
Ali, T. et al. A thin-film flexible defect-mode laser. Adv. Optical Mater. 8 , 1901891 (2020)..
Semenoff, G. W. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53 , 2449–2452 (1984)..
Cayssol, J. Introduction to Dirac materials and topological insulators. Comptes Rendus Phys. 14 , 760–778 (2013)..
Jung, J. et al. Transport properties of graphene nanoroads in boron nitride sheets. Nano Lett. 12 , 2936–2940 (2012)..
Dong, J. W. et al. Valley photonic crystals for control of spin and topology. Nat. Mater. 16 , 298–302 (2017)..
Jiang, J. W., Wang, B. S. & Park, H. S. Topologically protected interface phonons in two-dimensional nanomaterials: hexagonal boron nitride and silicon carbide. Nanoscale 10 , 13913–13923 (2018)..
Xue, H. R., Yang, Y. H. & Zhang, B. L. Topological valley photonics: physics and device applications. Adv. Photonics Res. 2 , 2100013 (2021)..
He, L. et al. Topologically protected quantum logic gates with valley-hall photonic crystals. Adv. Mater. 36 , 2311611 (2024)..
Wehling, T. O., Black-Schaffer, A. M. & Balatsky, A. V. Dirac materials. Adv. Phys. 63 , 1–76 (2014)..
Huang, S. et al. Interface state in one-dimensional acoustic resonator system with inversion symmetry breaking. J. Phys. Conf. Ser. 1828 , 012157 (2021)..
Yuan, L. Q. et al. Synthetic dimension in photonics. Optica 5 , 1396–1405 (2018)..
Ozawa, T. & Price, H. M. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1 , 349–357 (2019)..
Lustig, E. & Segev, M. Topological photonics in synthetic dimensions. Adv. Opt. Photonics 13 , 426–461 (2021)..
Wang, Y. et al. Transfer matrix method for light propagation in variable complex chiral media. Phys. Rev. E 104 , 064702 (2021)..
Fei, H. M. et al. Resonance tunnelling of photons through multiple-well structures in two- dimensional photonic crystals with various well-media. J. Phys. B: At., Mol. Optical Phys. 42 , 055401 (2009)..
Suthar, B. & Bhargava, A. Pressure sensor based on quantum well-structured photonic crystal. Silicon 13 , 1765–1768 (2021)..
Jiang, Y., Niu, C. & Lin, D. L. Resonance tunneling through photonic quantum wells. Phys. Rev. B 59 , 9981–9986 (1999)..
Qiao, F. et al. Photonic quantum-well structur es: multiple channeled filtering phenomena. Appl. Phys. Lett. 77 , 3698–3700 (2000)..
David, A. & Miller, B. Optical physics of quantum wells. In Quantum dynamics of simple systems (ed Oppo, G. L.) 239–266 (CRC Press, 1997).
Bernevig, B. A. & Hughes, T. L. 7. Graphene. In Topological insulators and topological superconductors (eds Bernevig, B. A. & Hughes, T. L.) 70–90 (Princeton University Press, 2013).
Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99 , 236809 (2007)..
Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82 , 1959–2007 (2010)..
Asbóth, J. K., Oroszlány, L. & Pályi, A. A short course on topological insulators: band structure and edge states in one and two dimensions (Springer, 2016).
Gao, S. H. et al. Coupling of defect modes in cholesteric liquid crystals separated by isotropic polymeric layers. Polymers 10 , 805 (2018)..
Wang, J. Y. et al. Topologically tuned terahertz confinement in a nonlinear photonic chip. Light Sci. Appl. 11 , 152 (2022)..
Han, C. et al. Lasing at topological edge states in a photonic crystal L3 nanocavity dimer array. Light Sci. Appl. 8 , 40 (2019)..
Zhang, T. C. et al. Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum. Nat. Commun. 14 , 6014 (2023)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621