1.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
2.Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
3.Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
4.Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, South Korea
Huang, D. X., Suh, Y. D. & Chen, G. Y. Modulating parallel photon avalanche in Ho3+ for multicolor nanoscopy and related applications. Light: Science & Applications, 14, 3340-3342 (2025).
DOI:
Huang, D. X., Suh, Y. D. & Chen, G. Y. Modulating parallel photon avalanche in Ho3+ for multicolor nanoscopy and related applications. Light: Science & Applications, 14, 3340-3342 (2025). DOI: 10.1038/s41377-025-02033-3.
Modulating parallel photon avalanche in Ho3+ for multicolor nanoscopy and related applications
Tuning the emissive chromaticity of parallel photon avalanches in Ho
3+
-doped nanoparticles with dual reservoir levels enables multicolor super-resolution imaging under 965 nm single wavelength continuous-wave excitation.
关键词
Keywords
references
Fardian-Melamed, N. et al. Infrared nanosensors of piconewton to micronewton forces. Nature 637 , 70–75 (2025)..
Hernández-Álvarez, C. et al. Photon-avalanche for developing a high-sensitivit y 3D-printed optical temperature sensor. J. Mater. Chem. C 13 , 9332–9338 (2025)..
Fernandez-Bravo, A. et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol . 13 , 572–577 (2018)..
Liu, Y. J. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543 , 229–233 (2017)..
Lee, C. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589 , 230–235 (2021)..
Liang, Y. S. et al. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity. Nat. Nanotechnol . 17 , 524–530 (2022)..
Dong, H. et al. Parallel photon avalanche nanoparticles for tunable emission and multicolour sub-diffraction microscopy. Nat. Photonics 19 , 692–700 (2025)..
Bednarkiewicz, A. et al. Photon avalanche in lanthanide doped nanoparticles for biomedical application s: super-resolution imaging. Nanoscale Horiz . 4 , 881–889 (2019)..
Levy, E. S. et al. Energy-looping nanoparticles: harnessing excited-state absorption for deep-tissue imaging. ACS Nano 10 , 8423–8433 (2016)..
Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol . 9 , 300–305 (2014)..
Zhou, B. et al. Enhancing multiphoton upconversion through interfacial energy transfer in multilayered nanoparticles. Nat. Commun . 11 , 1174 (2020)..
Zhan, Q. Q. et al. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun . 8 , 1058 (2017)..