Hu, J. B., Sha, Y. X. & Yang, Y. Edge states jointly determined by eigenvalue and eigenstate winding. Light: Science & Applications, 14, 3338-3339 (2025).
DOI:
Hu, J. B., Sha, Y. X. & Yang, Y. Edge states jointly determined by eigenvalue and eigenstate winding. Light: Science & Applications, 14, 3338-3339 (2025). DOI: 10.1038/s41377-025-02038-y.
Edge states jointly determined by eigenvalue and eigenstate winding
A photonic synthetic angular-momentum lattice realizes non-Hermitian topological edge modes that are jointly determined by the eigenstate and eigenenergy winding numbers.
关键词
Keywords
references
Chiu, C. K. et al. Classification of topological quantum matter with symmetries. Rev. Mod. Phys . 88 , 035005 (2016)..
Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys . 93 , 015005 (2021)..
Gong, Z. P. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8 , 031079 (2018)..
Kawabata, K. et al. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9 , 041015 (2019)..
Yin, C. H. et al. Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems. Phys. Rev. A 97 , 052115 (2018)..
Okuma, N. et al. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett . 124 , 086801 (2020)..
Wang, K. et al. Topological complex-energy braiding of non-Hermitian bands. Nature 598 , 59–64 (2021)..
Yang, M. et al. Observing half-integer topological winding numbers in non-Hermitian synthetic lattices. Light Sci. Appl . 14 , 225 (2025)..
Yu, D. Y. et al. Comprehensive review on developments of synthetic dimensions. Photonics Insights 4 , R06 (2025)..
Lustig, E. & Segev, M. Topological photonics in synthetic dimensions. Adv. Opt. Photonics 13 , 426–461 (2021)..
Luo, X. W. et al. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light. Nat. Commun . 8 , 16097 (2017)..
Cardano, F. et al. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun . 8 , 15516 (2017)..
Sha, Y. X. et al. Efficient algorithms for surface density of states in topological photonic and acoustic systems. Print at https://arxiv.org/abs/2408.07929 https://arxiv.org/abs/2408.07929 (2024).
Zhang, H. T. et al. Self-normal and biorthogonal dynamical quantum phase transitions in non-Hermitian quantum walks. Light Sci. Appl . 14 , 253 (2025)..
Kawabata, K., Numasawa, T. & Ryu, S. Entanglement phase transition induced by the non-Hermitian skin effect. Phys. Rev. X 13 , 021007 (2023)..
Han, P. R. et al. Exceptional entanglement phenomena: non-Hermiticity meeting nonclassicality. Phys. Rev. Lett . 131 , 260201 (2023)..
Yang, Y. et al. Non-Abelian physics in light and sound. Science 383 , eadf9621 (2024)..