
无数据
1.Materials Research Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge 02139 MA, USA
2.Department of Physics, Photonics, and Optical Engineering, Bridgewater State University, 131 Summer St, Bridgewater 02324 MA, USA
3.Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge 02139 MA, USA
4.Present address: Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg 20899 MD, USA
5.Present address: Ayar Labs, 695 River Oaks Pkwy, San Jose 95134 CA, USA
Drew Weninger (drewski@alum.mit.edu)
Received:28 February 2025,
Revised:2025-09-08,
Accepted:15 September 2025,
Published Online:01 January 2026,
Published:31 January 2026
Scan QR Code
Weninger, D. et al. Advances in waveguide to waveguide couplers for 3D integrated photonic packaging. Light: Science & Applications, 15, 70-118 (2026).
Weninger, D. et al. Advances in waveguide to waveguide couplers for 3D integrated photonic packaging. Light: Science & Applications, 15, 70-118 (2026). DOI: 10.1038/s41377-025-02048-w.
In this paper
we provide an overview and comparison of devices used for optical waveguide-to-waveguide coupling including inter-chip edge couplers
grating couplers
free form couplers
evanescent couplers
cantilever couplers
and optical wirebonds. In addition
technology for efficient transmission of light through chips is discussed including guided mode and free form photonic vias for substrates including silicon
glass
and organics. The results are discussed in the context of potential applications including co-packaged optics switch packages
replaceable biochemical sensors
optically connected memory
optical computing
integrated quantum photonics
and integrated LiDAR systems to show possible improvements in energy efficiency
performance
and cost.
Shekhar, S. et al. Roadmapping the next generation of silicon photonics. Nat. Commun. 15 , 751 (2024)..
Iqbal, M. et al. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE J. Sel. Top. Quantum Electron. 16 , 654–661 (2010)..
Zhang, X., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. A large-scale microelectromechanical-systems-based silicon photonics lidar. Nature 603 , 253–258 (2022)..
Seok, T. J., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. Wafer-scale silicon photonic switches beyond die size limit. Optica 6 , 490–494 (2019)..
Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15 , 102–114 (2021)..
Corsetti, S. et al. Silicon-photonics-enabled chip-based 3d printer. Light Sci. Appl. 13 , 132 (2024)..
Ranno, L. et al. Integrated photonics p ackaging: challenges and opportunities. ACS Photonics 9 , 3467–3485 (2022)..
Ogura, I., Kurata, K. & Pitwon, R. Silicon photonics econominc feasibility and relative cost analysis for automotive applications. In IEEE 802.3z Multigigabit Optical Automotive Ethernet Interim Task Force (2021).
Barwicz, T. et al. A novel approach to photonic packaging leveraging existing high-throughput microelectronic facilities. IEEE J. Sel. Top. Quantum Electron. 22 , 455–466 (2016)..
Kopp, C. et al. Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging. IEEE J. Sel. Top. Quantum Electron. 17 , 498–509 (2011)..
Mazari, R. & Pereira, G. High-end smartphone soc packaging comparison - advanced pop technology from standard, fan-out to flip-chip assembly. In IMAPSource Proceedings 118–139 (2024).
Fuchs, E. R. H., Bruce, E. J., Ram, R. J. & Kirchain, R. E. Process-based cost modeling of photonics manufacture: the cost competitiveness of monolithic integration of a 1550-nm DFB laser and an electroabsorptive modulator on an InP platform. J. Lightwave Technol. 24 , 3175–3186 (2006)..
Lujan, A. P. Cost Comparison of FO-WLP with Other Technologies , Ch. 2, 47–67 (John Wiley & Sons, Ltd, 2022).
Khan, S. M. & Mann, A. AI Chips: What They Are and Why They Matter . Tech. Rep., Center for Security and Emerging Technology (2020).
Kimerling, L., Baets, R., Jacob, A. & Rahim, A. Integrated Photonic Systems Roadmap-International (IPSR-I) 2024: Silicon Photonics . https://photonicsmanufacturing.org/2023-ipsr-i-integrated-photonic-systems-roadmap/ https://photonicsmanufacturing.org/2023-ipsr-i-integrated-photonic-systems-roadmap/ (2024)..
Wale, M. et al. Integrated Photonic Systems Roadmap-International (IPSR-I) 2024: INP and III-V Compounds . https://photonicsmanufacturing.org/2023-ipsr-i-integrated-photonic-systems-roadmap/ https://photonicsmanufacturing.org/2023-ipsr-i-integrated-photonic-systems-roadmap/ (2024)..
Harman, G. G. Wire Bonding in Microelectronics Materials, Processes, Reliability and Yield 3rd edn (McGraw-Hill Education, 2010).
Bardeen, J. & Brattain, W. H. The transistor, a semi-conductor triode. Phys. Rev. 74 , 230–231 (1948)..
Anderson, O. L., Christensen, H. & Andreatch, P. Technique for connecting electrical leads to semiconductors. J. Appl. Phys. 28 , 923–923 (1957)..
Massa, S., Shahin, D., Wathuthanthri, I., Drechsler, A. & Basantkumar, R. Process development for flip chip bonding with different bump compositions. In 2019 International Wafer Level Packaging Conference (IWLPC) , 1–6 (2019).
Qin, I. Wire Bonding Process , 2nd edn, 205–208 (McGraw-Hill Education, 2018).
Chen, W. et al. Heterogeneous Integration Roadmap 2021: Single Chip and Multi-chip Integration (2021).
Yu, S. Y. et al. Two-photon lithography for integrated photonic packaging. Light Adv. Manuf. 4 , 486 (2023)..
Fischer, A. C. et al. Unconventional applications of wire bonding create opportunities for microsystem integration. J. Micromech. Microeng. 23 , 083001 (2013)..
Wang, F. & Fan, D. Modeling and experimental study of a wire clamp for wire bonding. J. Electron. Packaging 137 , 011012 (2015)..
Pugh, E., Johnson, L. & Palmer, J. A Circuit Technology Gamble (MIT Press, 1991).
Davis, E. M., Harding, W. E., Schwartz, R. S. & Corning, J. J. Solid logic technology: versatile, high-performance microelectronics. IBM J. Res. Dev. 8 , 102–114 (1964)..
Miller, L. F. Controlled collapse reflow chip joining. IBM J. Res. Dev. 13 , 239–250 (1969)..
Lau, J. H. Flip Chip, Hybrid Bonding, Fan-In, and Fan-Out Technology , 1st edn, 1–501 (Springer Singapore, 2024).
Dasgupta, A. et al. Manufacturing Roadmap for Heterogeneous Integration and Electronics Packaging (MRHIEP): Advanced Packaging & Heterogeneous Integration . https://www.semi.org/sites/semi.org/files/2024-02/MRHIEP-Final-report-for-publication.pdf https://www.semi.org/sites/semi.org/files/2024-02/MRHIEP-Final-report-for-publication.pdf (2024)..
Lee, C. Y. et al. 3d integrated process and hybrid bonding of high bandwidth memory (HBM). Electron. Mater. Lett. 21 , 395–419 (2025)..
Kagawa, Y. et al. An advanced CuCu hybrid bonding for novel stacked CMOS image sensor. In 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM) , 65–67 (2018).
Chen, M.-F., Chen, F.-C., Chiou, W.-C. & Yu, D. C. System on integrated chips (soic(tm) for 3d heterogeneous integration. In 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) , 594–599 (2019).
Colosimo, T. et al. High productivity thermo-compression flip chip bonding. Int. Symp. Microelectron. 2014 , 000100–000106 (2014)..
Lau, J. H. Hybrid Bonding , 379–411 (Springer Singapore, 2021).
Burggraf, J., Uhrmann, T. & Pires, M. Collective die bonding: an enabling toolkit for heterogeneous integration. ECS Trans. 98 , 173 (2020)..
Sigl, A., Pargfrieder, S., Matthias, T., Wimplinger, M. & Kettner, P. Throughput enhanced flip-chip to wafer bonding: the advanced chip to wafer bonding. ECS Trans. 18 , 721 (2009)..
BE Semiconductor Industries NV. 2100 hs ix : The next Generation High Speed Die Bonder . https://www.besi.com/fileadmin/data/Products/esec_2100_hs_ix/Brochure_Esec__2100_hSix_00.pdf https://www.besi.com/fileadmin/data/Products/esec_2100_hs_ix/Brochure_Esec__2100_hSix_00.pdf (2025)..
Abdilla, J., Kainz, M., Pressl, B., Fraubaum, M. & Scanlan, C. Next generation of thermo-compression bonding equipment. In 2024 IEEE 26th Electronics Packaging Technology Conference (EPTC) , 568–574 (2024).
BE Semiconductor Industries NV. 9800 tc next : Next-gen Die Attach for Chiplet & Interposer Packages . https://www.besi.com/fileadmin/data/Products/9800_TC_next/9800_TC_next.pdf https://www.besi.com/fileadmin/data/Products/9800_TC_next/9800_TC_next.pdf (2025)..
BE Semiconductor Industries NV. Datacon 8800 CHAMEO ultra plus AC . https://www.besi.com/products-technology/product-details/product/datacon-8800-chameo-ultra-plus-ac/#tabs-1063 https://www.besi.com/products-technology/product-details/product/datacon-8800-chameo-ultra-plus-ac/#tabs-1063 (2025)..
SUSS MicroTec SE. SUSS XBC300 GEN2 D2W/W2W: Unique Hybrid Bonding Allrounder - Combined W2W and D2W platform . https://res.cloudinary.com/demhlsnej/image/upload/v1746533053/SUSS_XBC_300_Gen2_D2_W_W2_W_58fe497bad.pdf https://res.cloudinary.com/demhlsnej/image/upload/v1746533053/SUSS_XBC_300_Gen2_D2_W_W2_W_58fe497bad.pdf . (2025)..
Chew, S.-A. et al. The challenges and solutions of Cu/SiCN wafer-to-wafer hybrid bonding scaling down to 400 nm pitch. In 2023 International Electron Devices Meeting (IEDM) , 1–4 (2023).
Selhofer, H., Mayr, A. & Pristauz, H. Large panel size bonder with high performance and high accuracy. In 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) , 1492–1497 (2019).
Kennes, K. et al. Multi-tier die stacking through collective die-to-wafer hybrid bonding. In 2024 IEEE 74th Electronic Components and Technology Conference (ECTC) , 637–642 (2024).
Milosevic, M. M. et al. Industrial photonics packaging for high volume applications. In Optical Interconnects XXIV , Vol. 12892, 128920M (SPIE, 2024).
Kolloor, S. & Balamurugan, S. In Automatic Inspection and Novel Instrumentation , Vol. 3185 (eds Ho, A. T. S., Rao, S. & Cheng, L. M.) 2–10 (SPIE, 1997).
Zia, N. et al. Hybrid silicon photonics DBR laser based on flip-chip integration of GaSb amplifiers and μm-scale SOI waveguides. Opt. Express 30 , 24995–25005 (2022)..
Roelkens, G. et al. Present and future of micro-transfer printing for heterogeneous photonic integrated circuits. APL Photonics 9 , 010901 (2024)..
He, M. et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s −1 and beyond. Nat. Photonics 13 , 359–364 (2019)..
Aihara, T. et al. Heterogeneously integrated widely tunable laser using lattice filter and ring resonator on Si photonics platform. Opt. Express 30 , 15820–15829 (2022)..
Liu, A. Y. et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt. Lett. 42 , 338–341 (2017)..
Hu, Y. et al. Ⅲ/Ⅴ-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template. Light Sci. Appl. 8 , 93 (2019)..
Finetech GmbH & Co. KG. Fineplacer FEMTO 2: Unrivaled Flexibility for Prototyping and Production . https://finetechusa.com/products/fineplacer-femto-2/ https://finetechusa.com/products/fineplacer-femto-2/ (2024)..
MYCRONIC. MRSI-S-HVM High Speed, Flexible, 0.5-micron Flip-chip Die Bonder for High Volume Manufacturing . https://mrsisystems.com/mrsi-s-hvm/ https://mrsisystems.com/mrsi-s-hvm/ (2023)..
Xu, P. et al. Collective die-to-wafer bonding enabling low-loss evanescent coupling for optically interconnected system-on-wafer. In 2024 Optical Fiber Communications Conference and Exhibition (OFC) , 1–3 (2024).
Wakeel, S. et al. Micro-transfer printing of thick optical components using a tether-free UV-curable approach. J. Opt. Microsyst. 4 , 011003 (2023)..
Nakamura, F., Suzuki, K., Noriki, A. & Amano, T. Micromirror fabrication for co-packaged optics using 3d nanoimprint technology. J. Vac. Sci. Technol. B 40 , 063203 (2022)..
Noriki, A. et al. Characterization of optical redistribution loss developed for co-packaged optics. IEEE Photonics Technol. Lett. 34 , 899–902 (2022)..
Noriki, A. et al. Mirror-based broadband silicon-photonics vertical I/O with coupling efficiency enhancement for standard single-mode fiber. J. Lightwave Technol. 38 , 3147–3155 (2020)..
Noriki, A. et al. 45-degree curved micro-mirror for vertical optical I/O of silicon photonics chip. Opt. Express 27 , 19749–19757 (2019)..
Noriki, A. et al. Demonstration of optical re-distribution on silicon photonics die using polymer waveguide and micro mirrors. In 2020 European Conference on Optical Communications (ECOC) , 1–4 (2020).
Ocier, C. R. et al. Direct laser writing of volumetric gradient index lenses and waveguides. Light Sci. Appl. 9 , 196 (2020)..
Littlefield, A. J. et al. Low loss fiber-coupled volumetric interconnects fabricated via direct laser writing. Optica 11 , 995–1007 (2024)..
Pollock, C. R. & Lipson, M. Coupling between Optical Sources and Waveguides , 271–299 (Springer US, 2003).
Laidler, D. & Gallatin, G. M. Alignment and Overlay , 247–292 (CRC Press, 2020).
Yap, K. P. et al. Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching. J. Vac. Sci. Technol. A 24 , 812–816 (2006)..
Wang, J. et al. Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers. In Optical Fiber Communication Conference , M2I. 6 (Optica Publishing Group, 2016).
Tu, X. et al. Low polarization-dependent-loss silicon photonic trident edge coupler fabricated by 248 nm optical lithography. In Asia Communications and Photonics Conference 2015 , AS4B. 3 (Optica Publishing Group, 2015).
Kohli, N., Menard, M. & Ye, W. Efficient te/tm spot-size converter for broadband coupling to single mode fibers. OSA Continuum 2 (2019)..
Sisto, M. M., Fisette, B., Paultre, J.-E., Paquet, A. & Desroches, Y. In Silicon Photonics XI , Vol. 9752 (eds Reed, G. T. & Knights, A. P.) 975217 (SPIE, 2016).
Kruse, K. & Middlebrook, C. T. Poly mer taper bridge for silicon waveguide to single mode waveguide coupling. Opt. Commun. 362 , 87–95 (2016)..
Takei, R. et al. Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography. Appl. Phys. Lett. 102 , 101108 (2013)..
Galán, J. V., Sanchis, P., Sánchez, G. & Martí, J. Polarization insensitive low-loss coupling technique between SOI waveguides and high mode field diameter single-mode fibers. Opt. Express 15 , 7058–7065 (2007)..
Marinins, A. et al. Wafer-scale hybrid integration of InP DFB lasers on Si photonics by flip-chip bonding with sub-300 nm alignment precision. IEEE J. Sel. Top. Quantum Electron. 29 , 1–11 (2023)..
Barwicz, T., Kamlapurkar, S., Martin, Y., Bruce, R. L. & Engelmann, S. A silicon metamaterial chip-to-chip coupler for photonic flip-chip applications. In 2017 Optical Fiber Communications Conference and Exhibition (OFC) , 1–3 (2017).
Nah, J. et al. Flip chip assembly with sub-micron 3d re-alignment via solder surface tension. In 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) , 35–40 (2015).
Matsumoto, T. et al. Hybrid-integration of SOA on silicon photonics platform based on flip-chip bonding. J. Lightwave Technol. 37 , 307–313 (2019)..
Romero-García, S., Marzban, B., Merget, F., Shen, B. & Witzens, J. Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of Ⅲ-Ⅴ lasers with soi waveguides. IEEE J. Sel. Top. Quantum Electron. 20 , 369–379 (2014)..
Ahmed, T. et al. In Optical System Alignment, Tolerancing, and Verification VII , Vol. 8844 (eds Sasián, J. & Youngworth, R. N.) 88440C (SPIE, 2013).
Ahmed, T. et al. In CLEO: 2014 , JTu4A. 56 (Optica Publishing Group, 2014).
Ahmed, T. et al. Mid-infrared waveguide array inter-chip coupling using optical quilt packaging. IEEE Photonics Technol. Lett. 29 , 755–758 (2017)..
Ahmed, T. Optical Quilt Packaging: A New Chip to Chip Optical Coupling and Alignment Technique . Ph. D. thesis, University of Notre Dame (2017).
Sia, J. X. B. et al. Compact, hybrid Ⅲ-Ⅴ/silicon vernier laser diode operating fr om 1955-1992 nm. IEEE Photonics J. 13 , 1–5 (2021)..
Sia, J. X. B. et al. Compact silicon photonic hybrid ring external cavity (SHREC)/InGaSb-AlGaAsSb wavelength-tunable laser diode operating from 1881-19477D5nm. Opt. Express 28 , 5134–5146 (2020)..
Mitchell, C. J. et al. In Silicon Photonics XVIII , Vol. 12426 (eds Reed, G. T. & Knights, A. P.) 1242608 (SPIE, 2023).
Tuorila, H. et al. Micro-transfer printing of GaSb optoelectronics chips for mid-infrared silicon photonics integrated circuits. Adv. Mater. Technol. 10 , 2401791 (2025)..
Brooks, C. J., Knights, A. P. & Jessop, P. E. Vertically-integrated multimode interferometer coupler for 3d photonic circuits in SOI. Opt. Express 19 , 2916–2921 (2011)..
Nuck, M. et al. Low-loss vertical MMI coupler for 3D photonic integration. In 2018 European Conference on Optical Communication (ECOC) , 1–3 (2018).
Weigel, M. et al. 3D Photonic Integration: Cascaded 1x1 3D Multi-mode Interference Couplers for Vertical Multi-layer Connections . https://www.ecio-conference.org/wp-content/uploads/2020/06/11-Madeleine-Weigel-3D-Photonic-Integration-Cascaded-1x1-3D-Multi-mode-Interference-Couplers-ECIO-2020.pdf https://www.ecio-conference.org/wp-content/uploads/2020/06/11-Madeleine-Weigel-3D-Photonic-Integration-Cascaded-1x1-3D-Multi-mode-Interference-Couplers-ECIO-2020.pdf (2020)..
Serecunova, S. et al. Optimization of 3D 1 × 4 multimode interference splitter based on polymer material platform. AIP Conf. Proc. 2778 , 030009 (2023)..
Weigel, M. et al. Design and fabrication of crossing-free waveguide routing networks using a multi-layer polymer-based photonic integration platform. J. Lightwave Technol. 42 , 1511–1517 (2024)..
Weigel, M. et al. In Integrated Optics: Devices, Materials, and Technologies XXIX , Vol. 13369 (eds García-Blanco, S. M. & Cheben, P.) 1336919 (SPIE, 2025).
Kirita, K. & Koyama, F. Vertical MMI coupler for 3D photonic integrated circuits. In 2009 IEEE LEOS Annual Meeting Conference Proceedings , 477–478 (2009).
Sun, R. et al. High performance asymmetric graded index coupler with integrated lens for high index waveguides. Appl. Phys. Lett. 90 , 201116 (2007)..
Fahrenkopf, N. M. et al. The aim photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 25 , 1–6 (2019)..
Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics , 2nd edn, 1–40 (John Wiley & Sons Inc., 2007).
Marchetti, R. et al. High-efficiency grating-couplers: demonstration of a new design strategy. Sci. Rep. 7 , 16670 (2017)..
Marchetti, R., Lacava, C., Carroll, L., Gradkowski, K. & Minzioni, P. Coupling strategies for silicon photonics integrated chips. Photon. Res. 7 , 201–239 (2019)..
Zonou, Y. D. et al. Self-alignment with copper pillars micro-bumps for positioning optical devices at submicronic accuracy. In 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) , 557–562 (2017).
Bernabé, S. et al. Chip-to-chip optical interconnections between stacked self-aligned SOI photonic chips. Opt. Express 20 , 7886–7894 (2012)..
Wang, H. et al. Ultralow-loss optical interconnect enabled by topological unidirectional guided resonance. Sci. Adv. 10 , eadn4372 (2024)..
Benedikovic, D. et al. L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography. Opt. Lett. 42 , 3439–3442 (2017)..
Chen, Y. et al. Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si 3 N 4 waveguides. Opt. Lett. 42 , 3566–3569 (2017)..
Chen, X., Thomson, D. J., Crudginton, L., Khokhar, A. Z. & Reed, G. T. Dual-etch apodised grating couplers for efficient fibre-chip coupling near 1310 nm wavelength. Opt. Express 25 , 17864–17871 (2017)..
Tian, Z.-T., Zhuang, Z.-P., Fan, Z.-B., Chen, X.-D. & Dong, J.-W. High-efficiency grating couplers for pixel-level flat-top beam generation. Photonics 9 , 207 (2022)..
Benedikovic, D. et al. Sub-decibel silicon grating couplers based on L-shaped waveguides and engineered subwavelength metamaterials. Opt. Express 27 , 26239–26250 (2019)..
Vitali, V. et al. High-efficiency reflector-less dual-level silicon photonic grating coupler. Photon. Res. 11 , 1275–1283 (2023)..
Benedikovic, D. et al. High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure. Opt. Lett. 40 , 4190–4193 (2015)..
Alonso-Ramos, C. et al. Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%. Opt. Lett. 39 , 5351–5354 (2014)..
Luo, X., Mi, G., Li, Y. & Chu, T. High-efficiency grating coupler based on fast directional optimization and robust layout strategy in 130nm CMOS process. Opt. Lett. 47 , 1622–1625 (2022)..
Notaros, J. et al. Ultra-efficient CMOS fiber-to-chip grating couplers. In 2016 Optical Fiber Communications Conference and Exhibition (OFC) , 1–3 (2016).
Wade, M. T. et al. 75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process. In 2015 IEEE Optical Interconnects Conference (OI) , 46–47 (2015).
Michaels, A. & Yablonovitch, E. I nverse design of near unity efficiency perfectly vertical grating couplers. Opt. Express 26 , 4766–4779 (2018)..
Vermeulen, D. et al. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform. Opt. Express 18 , 18278–18283 (2010)..
Roelkens, G., Thourhout, D. V. & Baets, R. High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay. Opt. Express 14 , 11622–11630 (2006)..
Chen, H.-Y. & Yang, K.-C. Design of a high-efficiency grating coupler based on a silicon nitride overlay for silicon-on-insulator waveguides. Appl. Opt. 49 , 6455–6462 (2010)..
Wang, B., Jiang, J. & Nordin, G. Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides. IEEE Photonics Technol. Lett. 17 , 1884–1886 (2005)..
Schrauwen, J., Van Laere, F., Van Thourhout, D. & Baets, R. Focused-ion-beam fabrication of slanted grating couplers in silicon-on-insulator waveguides. IEEE Photonics Technol. Lett. 19 , 816–818 (2007)..
Van Laere, F. et al. Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides. J. Lightwave Technol. 25 , 151–156 (2007)..
Asaduzzaman, M., Bakaul, M., Skafidas, E. & Khandokar, M. R. H. A compact silicon grating coupler basedon hollow tapered spot-size converter. Sci. Rep. 8 , 2540 (2018)..
Zhang, H. et al. Efficient silicon nitride grating coupler with distributed Bragg reflectors. Opt. Express 22 , 21800–21805 (2014)..
Hong, J., Spring, A. M., Qiu, F. & Yokoyama, S. A high efficiency silicon nitride waveguide grating coupler with a multilayer bottom reflector. Sci. Rep. 9 , 12988 (2019)..
Wan, C., Gaylord, T. K. & Bakir, M. S. Circular waveguide grating-via-grating for interlayer coupling. IEEE Photonics Technol. Lett. 29 , 1776–1779 (2017)..
Wan, C. Optical Coupler Design and Experimental Demonstration for 2.5/3D Heterogeneous Integrated Electronics . Ph. D. thesis, Georgia Institute of Technology (2018).
Sodagar, M., Poura bolghasem, R., Eftekhar, A. A. & Adibi, A. High-efficiency and wideband interlayer grating couplers in multilayer si/sio2/sin platform for 3d integration of optical functionalities. Opt. Express 22 , 16767–16777 (2014)..
Kuno, Y. et al. Design of apodized hydrogenated amorphous silicon grating couplers with metal mirrors for inter-layer signal coupling: Toward three-dimensional optical interconnection. Jpn. J. Appl. Phys. 54 , 04DG04 (2015)..
Wang, J., Hu, C., Wang, Z. & Zhang, H. Efficient chip-to-chip silicon grating coupler with high alignment tolerance at o-band. In 2023 Opto-Electronics and Communications Conference (OECC) , 1–3 (2023).
Schares, L. et al. Terabus: Terabit/second-class card-level optical interconnect technologies. IEEE J. Sel. Top. Quantum Electron. 12 , 1032–1044 (2006)..
Noriki, A. et al. Broadband and polarization-independent efficient vertical optical coupling with 45° mirror for optical I/O of Si photonics. J. Lightwave Technol. 34 , 978–984 (2016)..
Boucaud, J.-M. et al. Glass interposer for heterogeneous integration of flip-chipped photonic and electronic integrated circuits. Appl. Phys. Lett. 125 , 054101 (2024)..
Tu, P., Chan, Y., Hung, K. & Lai, J. Study of micro-BGA solder joint reliability. Microelectron. Reliab. 41 , 287–293 (2001)..
Chen, H., van Uden, R., Okonkwo, C. & Koonen, T. Compact spatial multiplexers for mode division multiplexing. Opt. Express 22 , 31582–31594 (2014)..
Choi, S. et al. Development of a vertical optical coupler using a slanted etching of InP/InGaAsP waveguide. IEICE Electron. Express 10 , 20130116–20130116 (2013)..
Ip, V., Pearsall, F., Henry, T. & Singhal, R. In Advanced Etch Technology and Process Integration for Nanopatterning X , Vol. 11615 (eds Bannister, J. & Mohanty, N.) 116150H (SPIE, 2021).
Zornberg, L. Z. et al. Self-assembling systems for optical out-of-plane coupling devices. ACS Nano 17 , 3394–3400 (2023)..
Bar-On, O. et al. High quality 3d photonics using nano imprint lithography of fast sol-gel materials. Sci. Rep. 8 , 7833 (2018)..
Howell, S. T., Grushina, A., Holzner, F. & Brugger, J. Thermal scanning probe lithography—a review. Microsyst. nanoengineering 6 , 21 (2020)..
Yu, S. et al. Free-form micro-optics enabling ultra-broadband low-loss off-chip coupling. Laser Photonics Rev. 17 , 2200025 (2023)..
Yu, S. et al. Optical free-form couplers for high-density integrated photonics (offchip): a universal optical interface. J. Lightwave Technol. 38 , 3358–3365 (2020)..
Ranno, L. et al. Highly efficient fiber to Si waveguide free-form coupler for foundry-scale silicon photonics. Photon. Res. 12 , 1055–1066 (2024)..
Huang, H. et al. Photonic chiplet interconnection via 3D-nanoprinted interposer. Light Adv. Manuf. 5 , 542 (2024)..
Chen, A. et al. Vertically tapered polymer waveguide mode size transformer for improved fiber coupling. Opt. ENG.- OPT ENG 39 , 1507–1516 (2000)..
Hanai, K., Nakahara, T., Shimizu, S. & Matsumoto, Y. Fabrication of three-dimensional structures by image processing. Sens. Mater. 18 , 049–061 (2006)..
Trautmann, A., Götzendorfer, B., Walther, T. & Hellmann, R. Scaffolds in a shell—a new approach combining one-photon and two-photon polymerization. Opt. Express 26 , 29659–29668 (2018)..
Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366 , 105–109 (2019)..
Hahn, V. et al. Light-sheet 3d microprinting via two-colour two-step absorption. Nat. Photonics 16 , 784–791 (2022)..
Maibohm, C. et al. Multi-beam two-photon polymerization for fast large area 3d periodic structure fabrication for bioapplications. Sci. Rep. 10 , 8740 (2020)..
Pisanello, M. et al. An open source three-mirror laser scanning holographic two-photon lithography system. PLoS ONE 17 , e0265678 (2022)..
Obata, K., Koch, J., Hinze, U. & Chichkov, B. N. Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Opt. Express 18 , 17193–17200 (2010)..
Haus, H. & Šipilov, K. Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
Weninger, D., Serna, S., Jain, A., Kimerling, L. & Agarwal, A. High density vertical optical interconnects for passive assembly. Opt. Express 31 , 2816–2832 (2023)..
Weninger, D., Serna, S., Ranno, L., Kimerling, L. & Agarwal, A. Low loss chip-to-chip couplers for high-density co-packaged optics. Adv. Eng. Mater. 27 , 2402095 (2025)..
Brusberg, L. et al. Glass substrate with integrated waveguides for surface mount photonic packaging. J. Lightwave Technol. 39 , 912–919 (2021)..
Dangel, R. et al. Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics. IEEE J. Sel. Top. Quantum Electron. 24 , 1–11 (2018)..
Bandyopadhyay, S. & Englund, D. Alignment-free photonic interconnects. Preprint at https://arxiv.org/abs/2110.12851 https://arxiv.org/abs/2110.12851 (2021).
Dangel, R. et al. Development of versati le polymer waveguide flex technology for use in optical interconnects. J. Lightwave Technol. 31 , 3915–3926 (2013)..
Churaev, M. et al. A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform. Nat. Commun. 14 , 3499 (2023)..
Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610 , 54–60 (2022)..
Zhou, Z., Yin, B. & Michel, J. On-chip light sources for silicon photonics. Light Sci. Appl. 4 , e358–e358 (2015)..
Roelkens, G. et al. Iii-v/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev. 4 , 751–779 (2010)..
de Beeck, C. O. et al. Heterogeneous Ⅲ-Ⅴ on silicon nitride amplifiers and lasers via microtransfer printing. Optica 7 , 386–393 (2020)..
Zhang, Y., Ling, Y.-C., Zhang, Y., Shang, K. & Yoo, S. J. B. High-density wafer-scale 3-D silicon-photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 24 , 1–10 (2018)..
Sun, P. & Reano, R. M. Vertical chip-to-chip coupling between silicon photonic integrated circuits using cantilever couplers. Opt. Express 19 , 4722–4727 (2011)..
Atsumi, Y., Yoshida, T., Omoda, E. & Sakakibara, Y. Vertically-curved si surface optical coupler for coupling with standard single-mode optical fibers. In Optical Fiber Communication Conference (OFC) 2020 , W2A. 6 (Optica Publishing Group, 2020).
Qvotrup, C. et al. Curved GaAs cantilever waveguides for the vertical coupling to photonic integrated circuits. Opt. Express 32 , 3723–3734 (2024)..
Charavel, R., Olbrechts, B. & Raskin, J.-P. Stress release of PECVD oxide by RTA. Proc. SPIE 5116 , 596–606 (2003)..
Yoshida, T. et al. Vertical silicon waveguide coupler bent by ion implantation. Opt. Express 23 , 29449–29456 (2015)..
Yoshida, T., Atsumi, Y., Omoda, E. & Sakakibara, Y. Broadband and polarization insensitive surface optical coupler using vertically curved waveguides fabricated with ArF-immersion lithography. In Optical Fiber Communication Conference (OFC) 2019 , Tu2J. 7 (Optica Publishing Group, 2019).
Yoshida, T., Atsumi, Y., Omoda, E. & Sakakibara, Y. Improvement of fabrication accuracy of vertically curved silicon waveguide optical coupler using hard mask shielded ion implantation bending. Jpn. J. Appl. Phys. 59 , 078003 (2020)..
Yoshida, T., Atsumi, Y., Omoda, E. & Sakakibara, Y. Polarization-insensitive vertically curved Si surface optical coupler bent by ion implantation. IEEE Photonics Technol. Lett. 32 , 1319–1322 (2020)..
Sakakibara, Y. et al. Vertical optical fiber assembly on silicon photonic chips using 3D-curved silicon waveguide couplers. In 2020 Optical Fiber Communications Conference and Exhibition (OFC) , 1–3 (2020).
Leijtens, X., Santos, R. & Williams, K. High density multi-channel passively aligned optical probe for testing of photonic integrated circuits. IEEE Photonics J. 13 , 1–15 (2021)..
Wörhoff, K., Heideman, R. G., Leinse, A. & Hoekman, M. Triplex: a versatile dielectric photonic platform. Adv. Opt. Technol. 4 , 189–207 (2015)..
Blaicher, M. et al. Hybrid multi-chip asse mbly of optical communication engines by in situ 3d nano-lithography. Light Sci. Appl. 9 , 71 (2020)..
Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5 , 876–883 (2018)..
Gu, Z. et al. Optical transmission between Ⅲ-Ⅴ chips on Si using photonic wire bonding. Opt. Express 23 , 22394–22403 (2015)..
Lindenmann, N. et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express 20 , 17667–17677 (2012)..
Rhee, H.-W. et al. Direct optical wire bonding through open-to-air polymerization for silicon photonic chips. Opt. Lett. 47 , 714–717 (2022)..
Jiang, L. et al. Smartprint single-mode flexible polymer optical interconnect for high density integrated photonics. J. Lightwave Technol. 40 , 3839–3844 (2022)..
Lorenz, L., Nieweglowski, K., Wolter, K.-J. & Bock, K. Analysis of bending effects for optical-bus-couplers. In 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) , 2523–2528 (2016).
Lüngen, S. et al. 3D optical coupling techniques on polymer waveguides for wafer and board level integration. In 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) , 1612–1618 (2017).
Nieweglowski, K. et al. Optical coupling with flexible polymer waveguides for chip-to-chip interconnects in electronic systems. Microelectron. Reliab. 84 , 121–126 (2018)..
Reddy, J. W., Lassiter, M., Venkateswaran, R. & Chamanar, M. Parylene photonic waveguides with integrated vertical input/output ports for flexible, biocompatible photonics. In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII) , 2448–2451 (2019).
Reddy, J. W., Lassiter, M. & Chamanzar, M. Parylene photonics: a flexible, broadband optical waveguide platform with integrated micromirrors for biointerfaces. Microsyst. Nanoeng. 6 , 85 (2020)..
Frish, J. I. et al. Rapid photolithographic fabrication of high density optical interconnects using refractive index contrast polymers. Opt. Mater. Express 12 , 1932–1944 (2022)..
Gross, S. & Withford, M. J. Ultrafast-laser-inscribed 3d integrated photonics: challenges and emerging applications. Nanophotonics 4 , 332–352 (2015)..
Thomson, R. R. Ultrafast laser inscription of 3d waveguides for SDM applications. In ECOC 2016; 42nd European Conference on Optical Communication , 1–3 (2016).
Courvoisier, A., Booth, M. J. & Salter, P. S. Inscription of 3D waveguides in diamond using an ultrafast laser. Appl. Phys. Lett. 109 , 031109 (2016)..
Yoo, S., Guan, B. & Scott, R. P. Heterogeneous 2d/3d photonic integrated microsystems. Microsyst. Nanoeng. 2 , 1–9 (2016)..
Fernandez, T. T. et al. Ultrafast laser inscribed waveguides in tailored fluoride glasses: an enabling technology for mid-infrared integrated photonics devices. Sci. Rep. 12 , 14674 (2022)..
Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2 , 219–225 (2008)..
Zhang, Y., Samanta, A., Shang, K. & Yoo, S. J. B. Scalable 3d silicon phot onic electronic integrated circuits and their applications. IEEE J. Sel. Top. Quantum Electron. 26 , 1–10 (2020)..
Littlefield, A. J. et al. Enabling high precision gradient index control in subsurface multiphoton lithography. ACS Photonics 10 , 3008–3019 (2023)..
Kozai, T. D., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 6 , 48–67 (2015)..
Heck, M. J. R., Bauters, J. F., Davenport, M. L., Spencer, D. T. & Bowers, J. E. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev. 8 , 667–686 (2014)..
Noriki, A. et al. Through-silicon photonic via and unidirectional coupler for high-speed data transmission in optoelectronic three-dimensional LSI. IEEE Electron Device Lett. 33 , 221–223 (2012)..
Zhang, Y. et al. Sub-wavelength spacing optical phase array nanoantenna emitter with vertical silicon photonic vias. In 2018 Optical Fiber Communications Conference and Exposition (OFC) , 1–3 (2018).
Guo, P. et al. Fault-tolerant routing mechanism in 3d optical network-on-chip based on node reuse. IEEE Trans. Parallel Distrib. Syst. 31 , 547–564 (2020)..
Takagi, Y. et al. Optical through-hole with high aspect ratio for on-board optical transmission. In 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference , 1–3 (2011).
Vis, W., Chou, B. C., Sundaram, V. & Tummala, R. Self-aligned chip-to-chip optical interconnections in ultra-thin 3d glass interposers. In 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) , 804–809 (2015).
Chou, B. C. et al. Modeling, design, and demonstration of ultra-miniaturized and high efficiency 3d glass photonic modules. In 2014 IEEE 64th Electronic Components and Technology Conference (ECTC) , 1054–1059 (2014).
Moyer, P. J., Benrashid, R., Dupriez, P. & Farahi, F. In Micromachining Technology for Micro-Optics and Nano-Optics , Vol. 4984 (ed. Johnson, E. G.) 38–45 (SPIE, 2003).
Trichur, R., Fowler, M., McCutcheon, J. & Daily, M. Filling and planarizing deep trenches with polymeric material for through-silicon via technology. Int. Symp. Microelectron. 2010 , 000192–000196 (2010)..
Noriki, A. et al. Optical TSV using Si-photonics integrated curved micro-mirror. In 2019 International 3D Systems Integration Conference (3DIC) , 1–4 (2019).
Mangal, N., Missinne, J., Campenhout, J. V., Snyder, B. & Steenberge, G. V. Ball lens embedded through-package via to enable backside coupling between silicon photonics interposer and board-level interconnects. J. Lightwave Technol. 38 , 2360–2369 (2020)..
Mangal, N., Snyder, B., Van Campenhout, J., Van Steenberge, G. & Missinne, J. Expanded-beam backside coupling interface for alignment-tolerant packaging of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 26 , 1–7 (2020)..
Chou, B. et al. Design and demonstration of micro-mirrors and lenses for low loss and low cost single-mode fiber coupling in 3d glass photonic interposers. In 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) , 497–503 (2016).
Yang, Z. et al. High-G MEMS shock threshold sensor integrated on a copper filling through-glass-via (TGV) substrate for surface mount application. In 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) , 291–294 (2015).
Yook, J., Kim, D. & Kim, J. C. High performance IPDS (integrated passive devices) and TGV (through glass via) interposer technology using the photosensitive glass. 2014 IEEE 64th Electronic Components and Technology Conference (ECTC) 41–46 (2014).
Takahashi, S. et al. Development of through glass via (TGV) formation technology using electrical discharging for 2.5/3d integrated packaging. In 2013 IEEE 63rd Electronic Components and Technology Conference , 348–352 (2013).
Li, X., Abe, T., Liu, Y. & Esashi, M. Fabrication of high-density electrical feed-throughs by deep-reactive-ion etching of Pyrex glass. Microelectromech. Syst., J. 11 , 625-630 (2003)..
Sukumaran, V. et al. Through-package-via formation and metallization of glass interposers. In 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) 557–563 (2010).
Jin, J.-Y., Yoo, S., Bae, J.-S. & Kim, Y.-K. Deep wet etching of borosilicate glass and fused silica with dehydrated AZ4330 and a Cr/Au mask. J. Micromech. Microeng. 24 , 015003 (2013)..
Marcinkevičius, A. et al. Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26 , 277–279 (2001)..
Kawaguchi, Y., Sato, T., Narazaki, A., Kurosaki, R. & Niino, H. Etching a micro-trench with a maximum aspect ratio of 60 on silica glass by laser-induced backside wet etching (LIBWE). Jpn. J. Appl. Phys. 44 , L176 (2005)..
Flemming, J., McWethy, K., Mezel, T., Chenoweth, L. & Schmidt, C. Photosensitive glass-ceramics for heterogeneous integration. In Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT , Vol. 2019, 000880-000907 (2019).
Ishii, Y., Koike, S., Arai, Y. & Ando, Y. Smt-compatible large-tolerance "optobump" interface for interchip optical interconnections. IEEE Trans. Adv. Packaging 26 , 122–127 (2003)..
Brusberg, L., Schlepple, N. & Schröder, H. Chip-to-chip communication by optical routing inside a thin glass substrate. In 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) , 805–812 (2011).
Chou, B. et al. Co-design and demonstration of a fully integrated optical transceiver package featuring optical, electrical, and thermal interconnects in glass substrate. Int. Symp. Microelectron. 2016 , 000007–000 012 (2016)..
Chou, B. Low Loss and High Tolerance Out-Of-Plane Single-Mode Optical Interconnections in Glass Interposers . Ph. D. thesis, Georgia Institute of Technology (2016).
Ishii, Y. & Arai, Y. Large-tolerant "OptoBump" interface for interchip optical interconnections. Electron. Commun. Jpn. Part Ii-Electron. 86 , 1–8 (2003)..
Schröder, H., Brusberg, L., Arndt-Staufenbiel, N. & Tekin, T. In Photonics Packaging, Integration, and Interconnects IX , Vol. 7221 (eds. Glebov, A. L. & Chen, R. T.) 72210D (SPIE, 2009).
Missinne, J. et al. In Silicon Photonics XIV , Vol. 10923 (eds Reed, G. T. & Knights, A. P.) 1092304 (SPIE, 2019).
Kim, J. et al. Silicon vs. organic interposer: PPA and reliability tradeoffs in heterogeneous 2.5D chiplet integration. In 2020 IEEE 38th International Conference on Computer Design (ICCD) , 80–87 (2020).
Kash, J. et al. Chip-to-chip optical interconnects. In 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference , 3 (2006).
Libsch, F. et al. MCM LGA package with optical I/O passively aligned to dual layer polymer waveguides in PCB. In 56th Electronic Components and Technology Conference 2006 , 7 pp (2006).
Doany, F. E. et al. 160-Gb/s bidirectional parallel optical transceiver module for board-level interconnects using a single-chip CMOS IC. In 2007 Proceedings 57th Electronic Components and Technology Conference , 1256–1261 (2007).
Doany, F. et al. Chip-to-chip board-level optical data buses. In OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference , 1–3 (2008).
Schow, C. L. et al. A single-chip CMOS-based parallel optical transceiver capable of 240-Gb/s bidirectional data rates. J. Lightwave Technol. 27 , 915–929 (2009)..
Doany, F. E. et al. Terabit/s-class optical PCB links incorporating 360-gb/s bidirectional 850 nm parallel optical transceivers. J. Lightwave Technol. 30 , 560–571 (2012)..
Yagisawa, T. et al. Structure of 25-Gb/s optical engine for QSFP enabling high-precision passive alignment of optical assembly. In 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) , 1099–1104 (2016).
Mangal, N., Missinne, J., Van Steenberge, G., Van Campenhout, J. & Snyder, B. Performance evaluation of backside emitting O-band grating couplers for 100 μm-thick silicon photonics interposers. IEEE Photonics J. PP , 1–1 (2019)..
Reinsel, D., Gantz, J. & Rydning, J. The Digitization of the World from Edge to Core . Tech. Rep. US44413318, International Data Corporation (2018).
Minkenberg, C., Krishnaswamy, R., Zilkie, A. & Nelson, D. Co-packaged datacenter optics: opportunities and challenges. IET Optoelectron. 15 , 77–91 (2021)..
Fathololoumi, S. et al. 1.6 Tbps silicon photonics integrated circuit and 800 Gbps photonic engine for switch co-packaging demonstration. J. Lightwave Technol. 39 , 1155–1161 (2021)..
Liu, C. et al. Optical Internetworking Forum: Next Generation CEI-224G Framework. http://www.oiforum.com/wp-content/uploads/OIF-FD-CEI-224G-01.0.pdf http://www.oiforum.com/wp-content/uploads/OIF-FD-CEI-224G-01.0.pdf (2022).
Wang, X., He, X. & Ren, H. Advanced FEC for 200 Gb/s transceiver in 800 GbE and 1.6 TbE standard. IEEE Commun. Stand. Mag. 7 , 56–62 (2023)..
Ghiasi, A. Large data centers interconnect bottlenecks. Opt. Express 23 , 2085–2090 (2015)..
Piehler, D. In Optical Interconnects XX , Vol. 11286 (eds. Schröder, H. & Chen, R. T.) 1128602 (SPIE, 2020).
Rozite, V., Bertoli, E. & Reidenbach, B. Tracking Data Centres and Data Transmission Networks . https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks (2023)..
Xiang, C. & Bowers, J. E. Building 3d integrated circuits with electronics and photonics. Nat. Electron. 7 , 422–424 (2024)..
Samtec. Firefly Micro Flyover System . https://www.samtec.com/optics/optical-cable/mid-board/firefly https://www.samtec.com/optics/optical-cable/mid-board/firefly (2022)..
Barwicz, T. & Taira, Y. Low-cost interfacing of fibers to nan ophotonic waveguides: design for fabrication and assembly tolerances. IEEE Photonics J. 6 , 1–18 (2014)..
Martin, Y., Nah, J., Kamlapurkar, S., Engelmann, S. & Barwicz, T. Toward high-yield 3d self-alignment of flip-chip assemblies via solder surface tension. In 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) , 588–594 (2016).
Janta-Polczynski, A. et al. In Optical Interconnects XVIII , Vol. 10538 (eds Schröder, H. & Chen, R. T.) 105380B (SPIE, 2018).
Brusberg, L. et al. Glass interposer for high-density photonic packaging. In 2022 Optical Fiber Communications Conference and Exhibition (OFC) , 1–3 (2022).
Yeary, L. et al. Co-packaged optics on glass substrates for 102.4 Tb/s data center switches. In 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC) , 224–227 (2023).
Brusberg, L. et al. Glass platform for co-packaged optics. IEEE J. Sel. Top. Quantum Electron. 29 , 1–10 (2023)..
Takemura, K. et al. Silicon-photonics-embedded interposers as co-packaged optics platform. Trans. Jpn. Inst. Electron. Packaging 15 , E21–012–1–E21–012–13 (2022)..
Asch, J. V. et al. Low-loss integration of high-density polymer waveguides with silicon photonics for co-packaged optics. Optica 12 , 821–830 (2025)..
Schröder, H., Schwietering, J., Böttger, G. & Zamora, V. Hybrid photonic system integration using thin glass platform technology. J. Optical Microsyst. 1 , 033501 (2021)..
Zhang, Y. et al. Low-loss and broadband wafer-scale optical interposers for large-scale heterogeneous integration. Opt. Express 32 , 40–51 (2024)..
Lin, H. et al. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics 7 , 393–420 (2018)..
Chandrasekar, R., Lapin, Z. J., Nichols, A., Braun, R. & Fountain Ⅲ, A. W. Photonic integrated circuits for Department of Defense-relevant chemical and biological sensing applications: state-of-the-art and future outlooks. Opt. Eng. 58 , 020901 (2019)..
Gan, C. L. & Huang, C.-Y. Recycling of Noble Metals Used in Memory Packaging , 45–66 (Springer International Publishing, 2 023).
Mitchell, C. J. et al. Mid-infrared silicon photonics: from benchtop to real-world applications. APL Photonics 9 , 080901 (2024)..
Mai, A., Mai, C. & Steglich, P. From lab-on-chip to lab-in-app: challenges towards silicon photonic biosensors product developments. Results Opt. 9 , 100317 (2022)..
Laplatine, L. et al. System-level integration of active silicon photonic biosensors using fan-out wafer-level-packaging for low cost and multiplexed point-of-care diagnostic testing. Sens. Actuators B: Chem. 273 , 1610–1617 (2018)..
Mai, C., Steglich, P., Fraschke, M. & Mai, A. Back-side release of slot waveguides for the integration of functional materials in a silicon photonic technology with a full beol. IEEE Trans. Compon., Packaging Manuf. Technol. 10 , 1569–1574 (2020)..
Steglich, P. et al. Biopic - integration of biosensors based on photonic integrated circuits by local-backside etching. In 2020 ATTRACT Final Conference (2020).
Steglich, P. et al. CMOS-compatible silicon photonic sensor for refractive index sensing using local back -side release. IEEE Photonics Technol. Lett. 32 , 1241–1244 (2020)..
Adamopoulos, C. et al. Lab-on-chip for everyone: introducing an electronic-photonic platform for multiparametric biosensing using standard CMOS processes. IEEE Open J. Solid-State Circuits Soc. 1 , 198–208 (2021)..
Adamopoulos, C., Gharia, A., Niknejad, A., Anwar, M. & Stojanović, V. Electronic-photonic platform for label-free biophotonic sensing in advanced zero-change CMOS-SOI process. In 2019 Conference on Lasers and Electro-Optics (CLEO) , 1–2 (2019).
Luan, E. et al. Towards a high-density photonic tensor core enabled by intensity-modulated microrings and photonic wire bonding. Sci. Rep. 13 , 1260 (2023)..
Peserico, N., de Lima, T. F., Prucnal, P. & Sorger, V. J. Emerging devices and packaging strategies for electronic-photonic AI accelerators: opinion. Opt. Mater. Express 12 , 1347–1351 (2022)..
Nezami, M. S. et al. Packaging and interconnect considerations in neuromorphic photonic accelerators. IEEE J. Sel. Top. Quantum Electron. 29 , 1–11 (2023)..
Werner, S. et al. 3D photonics as enabling technology for deep 3D DRAM stacking. In Proceedings of the International Symposium on Memory Systems , MEMSYS '19, 206–221 (Association for Computing Machinery, 2019).
Shahab, A., Zhu, M., Margaritov, A. & Grot, B. Farewell my shared llc! a case for private die-stacked DRAM caches for servers. In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) , 559–572 (2018).
Serafy, C., Bar-Cohen, A., Srivastava, A. & Yeung, D. Unlocking the true potential of 3-D CPUs with microfluidic cooling. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24 , 1515–1523 (2016)..
Franzon, P., Wilson, J. & Li, M. Thermal isolation in 3d chip stacks using vacuum gaps and capacitive or inductive communications. In 2010 IEEE International 3D Systems Integration Conference (3DIC) , 1–4 (2010).
Zhang, Y. & Bakir, M. S. Independent interlayer microfluidic cooling for heterogeneous 3D IC applications. Electron. Lett. 49 , 404–406 (2013)..
Salvi, S. S. & Jain, A. A review of recent research on heat transfer in three-dimensional integrated circuits (3-D ICs). IEEE Trans. Compon., Packaging Manuf. Technol. 11 , 802–821 (2021)..
Luo, W. et al. Recent progress in quantum photonic chips for quantum communication and internet. Light Sci. Appl. 12 , 175 (2023)..
Zhang, G. et al. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics 13 , 839–842 (2019)..
Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A. & Braunstein, S. L. Advances in quantum teleportation. Nat. Photonics 9 , 641–652 (2015)..
Taballione, C. et al. A universal fully reconfigurable 12-mode quantum photonic processor. Mater. Quantum Technol. 1 , 035002 (2021)..
Harrow, A. W. & Montanaro, A. Quantum computational supremacy. Nature 549 , 203–209 (2017)..
Wang, H. et al. Toward scalable boson sampling with photon loss. Phys. Rev. Lett. 120 , 230502 (2018)..
Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single- photon detectors: physics and applications. Supercond. Sci. Technol. 25 , 063001 (2012)..
Pernice, W. H. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3 , 1325 (2012)..
Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. photonics 14 , 285–298 (2020)..
Gyger, S. et al. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 12 , 1408 (2021)..
Lomonte, E. et al. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun. 12 , 6847 (2021)..
Elshaari, A. W., Zadeh, I. E., Jöns, K. D. & Zwiller, V. Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits. IEEE Photonics J. 8 , 1–9 (2016)..
Gehl, M. et al. Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures. Optica 4 , 374–382 (2017)..
Kimble, H. J. The quantum internet. Nature 453 , 1023–1030 (2008)..
Chanana, A. et al. Ultra-low loss quantum photonic circuits integrated with single quantum emitters. Nat. Commun. 13 , 7693 (2022)..
Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8 , 889 (2017)..
Aghaeimeibodi, S. et al. Integration of quantum dots with lithium niobate photonics. Appl. Phys. Lett. 113 , 221102 (2018)..
Li, Q., Davanço, M. & Srinivasan, K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photonics 10 , 406–414 (2016)..
Lomonte, E., Lenzini, F., Loredo, J., Senellart, P. & Pernice, W. In Light-Matter Interactions Towards the Nanoscale (eds Cesaria, M., Calà Lesina, A. & Collins, J.) 339–341 (Springer Netherlands, 2022).
Rao, A. et al. Towards integrated photonic interposers for processing octave-spanning microresonator frequency combs. Light Sci. Appl. 10 , 109 (2021)..
Kudalippalliyalil, R., Chandran, S., Jaiswal, A., Wang, K. L. & Jacob, A. P. Heterogeneously integrated quantum chip interposer packaging. In 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC) , 1869–1874 (2022).
Staffas, T., Elshaari, A. & Zwiller, V. Frequency modulated continuous wave and time of flight lidar with single photons: a comparison. Opt. Express 32 , 7332–7341 (2024)..
Martin, A. et al. Photonic integrated circuit-based FMCW coherent LiDAR. J. Lightwave Technol. 36 , 4640–4645 (2018)..
Poulton, C. V. et al. Coherent LiDAR with an 8,192-element optical phased array and driving laser. IEEE J. Sel. Top. Quantum Electron. 28 , 1–8 (2022)..
Lukashchuk, A. et al. Photonic-electronic integrated circuit-based coherent LiDAR engine. Nat. Commun. 15 , 3134 (2024)..
Gagino, M. et al. Integrated optical phased array with on-chip amplification enabling programma ble beam shaping. Sci. Rep. 14 , 9590 (2024)..
Li, Y. et al. Wide-steering-angle high-resolution optical phased array. Photon. Res. 9 , 2511–2518 (2021)..
Xu, W. et al. Fully integrated solid-state lidar transmitter on a multi-layer silicon-nitride-on-silicon photonic platform. J. Lightwave Technol. 41 , 832–840 (2023)..
Ye, M. et al. Large steering range and low-loss integrated optical phased array with SiN-Si dual-layer non-uniform antenna. Opt. Express 31 , 44564–44574 (2023)..
Poulton, C. V. et al.Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt. Lett. 42 , 21–24 (2017)..
Zhang, L. et al. Investigation and demonstration of a high-power handling and large-range steering optical phased array chip. Opt. Express 29 , 29755–29765 (2021)..
Komatsu, K., Kohno, Y., Nakano, Y. & Tanemura, T. Large-scale monolithic InP-based optical phased array. IEEE Photonics Technol. Lett. 33 , 1123–1126 (2021)..
Zhang, Z. et al. A tri-layer Si 3 N 4 -on-Si optical phased array with high angular resolution. IEEE Photonics Technol. Lett. 34 , 1108–1111 (2022)..
Notaros, J. et al. Cmos-compatible optical phased array powered by a monolithically-integrated erbium laser. J. Lightwave Technol. 37 , 5982–5987 (2019)..
Im, C.-S. et al. Hybrid integrated silicon nitride-polymer optical phased array for efficient light detection and ranging. J. Lightwave Technol. 39 , 4402–4409 (2021)..
Lee, E.-S., Jin, J., Chun, K.-W., Lee, S.-S. & Oh, M.-C. High-performance optical phased array for LiDARs demonstrated by monolithic integration of polymer and SiN waveguides. Opt. Express 31 , 28112–28121 (2023)..
Rahim, A. et al. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Lightwave Technol. 35 , 639–649 (2017)..
Wang, P. et al. Design and fabrication of a SiN-Si dual-layer optical phased array chip. Photon. Res. 8 , 912–919 (2020)..
Lee, E.-S., Chun, K.-W., Jin, J., Lee, S.-S. & Oh, M.-C. Monolithic integration of polymer waveguide phase modulators with silicon nitride waveguides using adiabatic transition tapers. Opt. Express 31 , 4760–4769 (2023)..
Chen, Y. Applications of nanoimprint lithography/hot embossing: a review. Appl. Phys. A 121 , 451–465 (2015)..
Maruyama, N. et al. In Novel Patterning Technologies 2023 , Vol. 12497, 124970D (SPIE, 2023).
Sreenivasan, S. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits. Microsyst. Nanoeng. 3 , 17075 (2017)..
Scarcella, C. et al. Pluggable single-mode fiber-array-to-pic coupling using micro-lenses. IEEE Photonics Technology Letters 1–1 (2017).
Xu, Y. et al. 3D-printed facet-attached microlenses for advanced photonic system assembly. Light Adv. Manuf. 4 , 77 (2023)..
Du, Y. et al. Detachable interface toward a low-loss reflow-compatible fiber coupling for co-packaged optics (CPO). Opt. Express 31 , 1318–1329 (2023)..
Gradkowski, K. et al. Demonstration of a single-mode expanded-beam connectorized module for photonic integrated circuits. J. Lightwave Technol. 41 , 3470–3478 (2023)..
Lu, M. et al. Photonic integration using industry ready photonic wire bonds & facet attached micro-lenses. IEEE Transactions on Components, Packaging and Manufacturing Technology 1–1 (2025).
Miller, D. A. B. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol. 35 , 346–396 (2017)..
Weninger, D., Duessel, C., Serna, S., Kimerling, L. & Agarwal, A. Graded index couplers for next generation chip-to-chip and fiber-to-chip photonic packaging. Preprint at https://doi.org/10.48550/arXiv.2503.00121 https://doi.org/10.48550/arXiv.2503.00121 (2025).
Yao, J. et al. Grating-coupler based low-loss optical interlayer coupling. In 8th IEEE International Conference on Group IV Photonics , 383–385 (2011).
Cabezón, M. et al. Silicon-o n-insulator chip-to-chip coupling via out-of-plane or vertical grating couplers. Appl. Opt. 51 , 8090–8094 (2012)..
Xu, X. et al. Complementary metal-oxide-semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics. Appl. Phys. Lett. 101 , 031109 (2012)..
Zhang, Y. et al. On-chip intra- and inter-layer grating couplers for three-dimensional integration of silicon photonics. Appl. Phys. Lett. 102 , 211109 (2013)..
Kang, J. et al. Layer-to-layer grating coupler based on hydrogenated amorphous silicon for three-dimensional optical circuits. Jpn. J. Appl. Phys. 51 , 120203 (2012)..
Kang, J., Nishiyama, N., Atsumi, Y., Amemiya, T. & Arai, S. In Optoelectronic Interconnects XIII , Vol. 8630 (eds Glebov, A. L. & Chen, R. T.) 863008 (SPIE, 2013).
Kang, J. et al. Amorphous-silicon inter-layer grating couplers with metal mirrors toward 3-D interconnection. IEEE J. Sel. Top. Quantum Electron. 20 , 317–322 (2014)..
Kang, J. H. et al. 50 gbps data transmission through amorphou s silicon interlayer grating couplers with metal mirrors. Appl. Phys. Express 7 , 032202 (2014)..
Nishiyama, N. et al. Si-photonics-based layer-to-layer coupler toward 3d optical interconnection. IEICE Trans. Electron. E101. C , 501–508 (2018)..
Pashkova, T. & O'Brien, P. In Optical Interconnects XX , Vol. 11286 (eds Schröder, H. & Chen, R. T.) 112860N (SPIE, 2020).
Santos, R., Campo, B. B., Smit, M. K. & Leijtens, X. J. M. Vertical coupling mirror for on-wafer optical probing of photonic integrated circuits. In Advanced Photonics 2013 (2013).
Santos, R. et al. Fabrication of etched facets and vertical couplers in InP for packaging and on-wafer test. IEEE Photonics Technol. Lett. 28 , 245–247 (2016)..
Song, B., Stagarescu, C., Ristic, S., Behfar, A. & Klamkin, J. 3D integrated hybrid silicon laser. Opt. Express 24 , 10435–10444 (2016)..
Contu, P., Stagarescu, C., Behfar, A. & Klamkin, J. 3D integrated silicon photonic external cavity laser (SPECL). In 2014 IEEE Photonics Conference , 258–259 (2014).
Song, B. et al. 3D integrated hybrid silicon laser. In 2015 European Conference on Optical Communication (ECOC) , 1–3 (2015).
Noriki, A., Amano, T., Mori, M. & Sakakibara, Y. Mirror-based surface optical input/output technology with precise and arbitrary coupling angle for silicon photonic application. Jpn. J. Appl. Phys. 56 , 04CH04 (2017)..
Boucaud, J. et al. Single mode polymer optical waveguides and out-ofplane coupling structure on a glass substrate. In 2018 7th Electronic System-Integration Technology Conference (ESTC) , 1–5 (2018).
Sun, R. et al. Impedance matching vertical optical waveguide couplers for dense high index contrast circuits. Opt. Express 16 , 11682–11690 (2008)..
Shu, J., Qiu, C., Zhang, X. & Xu, Q. Efficient coupler between chip-level and board-level optical waveguides. Opt. Lett. 36 , 3614–3616 (2011)..
Bessette, J. T. & Ahn, D. Vertically stacked microring waveguides for coupling between multiple photonic planes. Opt. Express 21 , 13580–13591 (2013)..
Itoh, K. et al. Crystalline/amorphous si integrated optical couplers for 2d/3d interconnection. IEEE J. Sel. Top. Quantum Electron. 22 , 255–263 (2016)..
Ramadan, T. A. A novel design of a wideband digital vertical multimode interference coupler. J. Lightwave Technol. 34 , 4015–4022 (2016)..
Seok, T. J., Quack, N., Han, S., Muller, R. S. & Wu, M. C. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica 3 , 64–70 (2016)..
Soganci, I. M., Porta, A. L. & Offrein, B. J. Flip-chip optical couplers with scalable I/O count for silicon photonics. Opt. Express 21 , 16075–16085 (2013)..
Lamprecht, T. et al. Electronic-photonic board as an integration platform for Tb/S multi-chip optical communication. IET Optoelectron. 15 , 92–101 (2021)..
Singaravelu, P. K. J. et al. Low-loss, compact, spot-size-converter based vertical couplers for photonic integrated circuits. J. Phys. D: Appl. Phys. 52 , 214001 (2019)..
Marinins, A. et al. Silicon photonics co-integrated with silicon nitride for optical phased arrays. Jpn. J. Appl. Phys. 59 , SGGE02 (2020)..
Van Asch, J. et al. Sub-1 DB loss sin-to-polymer waveguide coupling: an enabler for co-packaged optics. In 2024 Optical Fiber Communications Conference and Exhibition (OFC) , 1–3 (2024).
Xia, F. et al. An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler. IEEE Photonics Technol. Lett. 13 , 845–847 (2001)..
Xia, F., Menon, V. & Forrest, S. Photonic integration using asymmetric twin-waveguide (ATG) technology: part Ⅰ-concepts and theory. IEEE J. Sel. Top. Quantum Electron. 11 , 17–29 (2005)..
Menon, V., Xia, F. & Forrest, S. Photonic integration using asymmetric twin-waveguide (ATG) technology: part Ⅱ-devices. IEEE J. Sel. Top. Quantum Electron. 11 , 30–42 (2005)..
Galarza, M., De Mesel, K., Fuentes, D., Baets, R. & Lopez-Amo, M. Modeling of InGaAsP–InP 1.55 μm lasers with integrated mode expanders using fiber-matched leaky waveguides. Appl. Phys. B 73 , 585–588 (2001)..
Galarza, M. et al. InGaAsP–InP 1.55 μm lasers with integrated mode expanders using fiber-matched leaky waveguides. In LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No. 01CH37242) , Vol. 2, 798–799 (2001).
Galarza, M. et al. Mode-expanded 1.55-μm InP-InGaAsP Fabry-Perot lasers using arrow waveguides for efficient fiber coupling. IEEE J. Sel. Top. Quantum Electron. 8 , 1389–1398 (2002)..
Galarza, M., Thourhout, D. V., Baets, R. & López-Amo, M. Compact and highly-efficient vertical couplers for active-passive monolithic integration. In Integrated Photonics Research and Applications/Nanophotonics for Information Systems , IWG3 (Optica Publishing Group, 2005).
Lamponi, M. et al. Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler. IEEE Photonics Technol. Lett. 24 , 76–78 (2012)..
Huang, Q., Cheng, J., Liu, L., Tang, Y. & He, S. Ultracompact tapered coupler for the Si/Ⅲ–Ⅴ heterogeneous integration. Appl. Opt. 54 , 4327–4332 (2015)..
Liu, C., Zhao, G., Yang, F., Lu, Q. & Guo, W. Design of compact but fabrication-tolerant vertical coupler for active-passive integration. J. Lightwave Technol. 36 , 755–762 (2018)..
Haq, B. et al. Micro-transfer-printed Ⅲ-Ⅴ-on-silicon c-band semiconductor optical amplifiers. Laser Photonics Rev. 14 , 1900364 (2020)..
He, A., Guo, X., Sun, L., Wang, H. & Su, Y. Ultra-compact coupling structures for heterogeneously integrated silicon lasers. J. Lightwave Technol. 38 , 3974–3982 (2020)..
Yao, C., Cheng, Q., Roelkens, G. & Penty, R. Bridging the gap between resonance and adiabaticity: a compact and highly tolerant vertical coupling structure. Photon. Res. 10 , 2081–2090 (2022)..
Cai, C. et al. Superior ultrafast laser-inscribed photonic-lanternmode (de)multiplexers using trajectory-asymmetry with uniform waveguides. Light Adv. Manuf. 6 , 14 (2025)..
Zhang, J., Zhang, C., Liang, G. & Yang, Y. Simulation research of high-efficiency unidirectional vertical coupling grating couplers for optical through-silicon vias in 3d optoelectronic integrated circuits. Opt. Commun. 479 , 126408 (2021)..
Ling, Y.-C., Lee, S.-H., Saleque, A. M., Zhang, Y. & Yoo, S. J. B. 3d electronic photonic integrated circuits (3d epics): Co-design and co-integration for optimal performance at scale. In CLEO 2024 , JTh3K. 1 (Optica Publishing Group, 2024).
Schröder, H. et al. glassPack—a 3d glass based interposer concept for SIP with integrated optical interconnects. In 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) , 1647–1652 (2010).
Lau, J. H. Recent advances and trends in advanced packaging. IEEE Trans. Compon., Packaging Manuf. Technol. 12 , 228–252 (2022)..
Wong, H.-S. P. et al. A density metric for semiconductor technology. Proc. IEEE 108 , 478–482 (2020)..
Sahoo, K., Harish, V., Ren, H. & Iyer, S. S. A review of die-to-die, die-to-substrate and die-to-wafer heterogeneous integration. IEEE Electron Devices Rev. 2 , 6–31 (2025)..
Mahajan, R. et al. Heterogeneous Integration Roadmap 2024: Interconnects for 2D and 3D Architectures . https://eps.ieee.org/images/files/HIR_2024/HIR_2024_ch22_2D-3D.pdf https://eps.ieee.org/images/files/HIR_2024/HIR_2024_ch22_2D-3D.pdf (2024)..
Barwicz, T. et al. Automated, high-throughput photonic packaging. Opt. Fiber Technol. 44 , 24–35 (2018). Special Issue on Data Center Communications..
La Porta, A. et al. Scalable optical coupling between silicon photonics waveguides and polymer waveguides. In 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) , 461–467 (2016).
Porta, A. L. et al. Scalable and broadband silicon photonics chip to fiber optical interface using polymer waveguides. In 2017 IEEE Optical Interconnects Conference (OI) , 13–14 (2017).
Margalit, N. et al. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 118 , 220501 (2021)..
Broadcom Inc. Broadcom Ships Tomahawk 6: World's First 102.4 Tbps Switch . https://www.broadcom.com/company/news/product-releases/63146 https://www.broadcom.com/company/news/product-releases/63146 (2025)..
Hou, H. Industry-first Co-packaged Optics Ethernet Switch Solution with Intel Silicon Photonics . https://community.intel.com/t5/Blogs/Products-and-Solutions/Ethernet/Industry-First-Co-Packaged-Optics-Ethernet-Switch-Solution-with/post/1334956 https://community.intel.com/t5/Blogs/Products-and-Solutions/Ethernet/Industry-First-Co-Packaged-Optics-Ethernet-Switch-Solution-with/post/1334956 (2025)..
Broadcom Inc. Broadcom Showcases Industry-leading Hyperscale Solutions at the 2022 Open Compute Project Global Summit . https://www.broadcom.com/company/news/product-releases/60581 https://www.broadcom.com/company/news/product-releases/60581 (2025)..
Torza, A. CISCO Demonstrates Co-packaged Optics (CPO) System at OFC 2023 . https://blogs.cisco.com/sp/cisco-demonstrates-co-packaged-optics-cpo-system-at-ofc-2023 https://blogs.cisco.com/sp/cisco-demonstrates-co-packaged-optics-cpo-system-at-ofc-2023 (2025)..
Broadcom Inc. Broadcom Delivers Industry's First 51.2-Tbps Co-packaged Optics Ethernet Switch Platform for Scalable AI Systems . https://www.broadcom.com/company/news/product-releases/61946 https://www.broadcom.com/company/news/product-releases/61946 (2025)..
NVIDIA Corporation. NVIDIA Announces Spectrum-X Photonics, Co-packaged Optics Networking Switches to Scale AI Factories to Millions of GPUs . https://investor.nvidia.com/news/press-release-details/2025/NVIDIA-Announces-Spectrum-X-Photonics-Co-Packaged-Optics-Networking-Switches-to-Scale-AI-Factories-to-Millions-of-GPUs/default.aspx https://investor.nvidia.com/news/press-release-details/2025/NVIDIA-Announces-Spectrum-X-Photonics-Co-Packaged-Optics-Networking-Switches-to-Scale-AI-Factories-to-Millions-of-GPUs/default.aspx (2025)..
Suda, S. et al. High-power stability and reliability of polymer optical waveguide for co-packaged optics. J. Lightwave Technol. 43 , 4903–4912 (2025)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621