
无数据
1.IBM Research Europe – Zurich, Rüschlikon, Switzerland
2.Photonics Laboratory, ETH Zürich, Zürich, Switzerland, Switzerland
3.AMO GmbH, Aachen, Germany
4.Chair of Electronic Devices, RWTH Aachen University, Aachen, Germany
5.Macromolecular Chemistry Group and Wuppertal Center for Smart Materials & Systems (CM@S), Bergische Universität Wuppertal, Wuppertal, Germany
Darius Urbonas (dar@zurich.ibm.com)
Thilo Stöferle (tof@zurich.ibm.com)
Received:10 March 2025,
Revised:2025-08-27,
Accepted:15 September 2025,
Online First:12 January 2026,
Published:28 February 2026
Scan QR Code
Tassan, P. et al. Integrated, ultrafast all-optical polariton transistors with sub-wavelength grating microcavities. Light: Science & Applications, 15, 451-459 (2026).
Tassan, P. et al. Integrated, ultrafast all-optical polariton transistors with sub-wavelength grating microcavities. Light: Science & Applications, 15, 451-459 (2026). DOI: 10.1038/s41377-025-02050-2.
All-optical logic has the potential to overcome the operation speed barrier that has persisted in electronic circuits for two decades. However
the development of scalable architectures has been prevented so far by the lack of materials with sufficiently strong nonlinear interactions needed to realize compact and efficient ultrafast all-optical switches with optical gain. Microcavities with embedded organic material in the strong light-matter interaction regime have recently enabled all-optical transistors operating at room temperature with picosecond switching times. However
the vertical cavity geometry
which is predominantly used in polaritonics
is not suitable for complex circuits with on-chip coupled transistors. Here
by leveraging state-of-the-art silicon photonics technology
we have achieved exciton-polariton condensation at ambient conditions in ful
ly integrated high-index contrast sub-wavelength grating microcavities filled with a π-conjugated polymer as optically active material. We demonstrate ultrafast all-optical transistor action by coupling two resonators and utilizing seeded polariton condensation. With a device area as small as 2 × 2 µm
2
we realize picosecond switching and amplification up to 60x
with extinction ratio up to 8:1. This compact ultrafast transistor device with in-plane integration is a key component for a scalable platform for all-optical logic circuits that could operate two orders of magnitude faster than electronic counterparts.
Dennard, R. H. et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 9 , 256–268 (1974)..
Greenlaw, R., Ruzzo, W. L. & Hoover, J. A Compendium of Problems Complete for P (Preliminary) (University of Washington, 1991).
Datta, S., Chakraborty, W. & Radosavljevic, M. Toward attojoule switching energy in logic transistors. Science 378 , 733–740 (2022)..
Miller, D. A. B. Are optical transistors the logical next step? Nat. Photonics 4 , 3–5 (2010)..
Caulfield, H. J. Perspectives in optical computing. Computer 31 , 22–25 (1998)..
Gibbs, H. M. Optical Bistability: Controlling Light with Light (Orlando: Academic Press, 1985).
Haus, H. A. & Whitaker, N. A. All-optical logic in optical waveguides. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 313 , 311–319 (1984)..
Stubkjaer, K. E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE J. Sel. Top. Quant. Electron. 6 , 1428–1435 (2000)..
Almeida, V. R. et al. All-optical control of light on a silicon chip. Nature 431 , 1081–1084 (2004)..
Liu, L. et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat. Photonics 4 , 182–187 (2010)..
Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 4 , 477–483 (2010)..
Fu, Y. L. et al. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 12 , 5784–5790 (2012)..
Tang, X. F. et al. A reconfigurable optical logic gate with up to 25 logic functions based on polarization modulation with direct detection. IEEE Photonics J. 9 , 1–11 (2017)..
Kuznetsova, Y. Y. et al. All-optical excitonic transistor. Opt. Lett. 35 , 1587–1589 (2010)..
Hwang, J. et al. A single-molecule optical transistor. Nature 460 , 76–80 (2009)..
McCormick, F. B. et al. Six-stage digital free-space optical switching network using symmetric self-electro-optic-effect devices. Appl. Opt. 32 , 5153–5171 (1993)..
Fushimi, A. & Tanabe, T. All-optical logic gate operating with single wavelength. Opt. Express 22 , 4466–4479 (2014)..
Kavokin, A. et al. Microcavities 2nd edn (Oxford: Oxford University Press, 2017).
Savvidis, P. G. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84 , 1547–1550 (2000)..
Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4 , 1778 (2013)..
Marsault, F. et al. Realization of an all optical exciton-polariton router. Appl. Phys. Lett. 107 , 201115 (2015)..
Schmutzler, J. et al. All-optical flow control of a polariton condensate using nonresonant excitation. Phys. Rev. B. 91 , 195308 (2015)..
Feng, J. G. et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci. Adv. 7 , eabj6627 (2021)..
Lidzey, D. G. et al. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature 395 , 53–55 (1998)..
Coles, D. M. et al. Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater. 21 , 3691–3696 (2011)..
Plumhof, J. D. et al. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nat. Mater. 13 , 247–252 (2014)..
Daskalakis, K. S. et al. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13 , 271–278 (2014)..
Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photonics 13 , 378–383 (2019)..
Sannikov, D. A. et al. Room temperature, cascadable, all-optical polariton universal gates. Nat. Commun. 15 , 5362 (2024)..
Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature. Nature 597 , 493–497 (2021)..
Jamadi, O. et al. Edge-emitting polariton laser and amplifier based on a ZnO waveguide. Light Sci. Appl. 7 , 82 (2018)..
Li, H. et al. All-optical temporal logic gates in localized exciton polaritons. Nat. Photonics 18 , 864–869 (2024)..
Mateus, C. F. R. et al. Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photonics Technol. Lett. 16 , 518–520 (2004)..
Chang-Hasnain, C. J. & Yang, W. J. High-contrast gratings for integrated optoelectronics. Adv. Opt. Photonics 4 , 379–440 (2012)..
Zhang, B. et al. Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity. Light Sci. Appl. 3 , e135 (2014)..
Stöferle, T. et al. Ultracompact silicon/polymer laser with an absorption-insensitive nanophotonic resonator. Nano Lett. 10 , 3675–3678 (2010)..
Urbonas, D. Tunable Coupled Microcavities for Enhanced Light-Matter Interaction (ETH Zurich, Zurich, 2019).
Ramezani, M. et al. Plasmon-exciton-polariton lasing. Optica 4 , 31–37 (2017)..
Hakala, T. K. et al. Bose–Einstein condensation in a plasmonic lattice. Nat. Phys. 14 , 739–744 (2018)..
Castellanos, G. W. et al. Non-equilibrium Bose–Einstein condensation of exciton-polaritons in silicon metasurfaces. Adv. Optical Mater. 11 , 2202305 (2023)..
Stanley, R. P. et al. Cavity-polariton photoluminescence in semiconductor microcavities: experimental evidence. Phys. Rev. B. 53 , 10995–11007 (1996)..
Wenus, J. et al. Tuning the exciton-photon coupling in a strongly coupled organic microcavity containing an optical wedge. Appl. Phys. Lett. 85 , 5848–5850 (2004)..
Mazza, L. et al. Microscopic theory of polariton lasing via vibronically assisted scattering. Phys. Rev. B. 88 , 075321 (2013)..
Misko, M. et al. Temporal bandwidth of consecutive polariton condensation. Phys. Rev. B. 111 , L161403 (2025)..
Fischbach, J. D. et al. A framework to compute resonances arising from multiple scattering. Adv. Theory Simul. 8 , 2400989 (2025)..
Urbonas, D., Mahrt, R. F. & Stöferle, T. Low-loss optical waveguides made with a high-loss material. Light Sci. Appl. 10 , 15 (2021)..
Cegielski, P. J. et al. Monolithically integrated perovskite semiconductor lasers on silicon photonic chips by scalable top-down fabrication. Nano Lett. 18 , 6915–6923 (2018)..
Chauhan, N. et al. Ultra-low loss visible light waveguides for integrated atomic, molecular, and quantum photonics. Opt. Express 30 , 6960–6969 (2022)..
Scherf, U., Bohnen, A. & Müllen, K. Polyarylenes and poly(arylenevinylene)s, 9 + the oxidized states of a (1,4-phenylene) ladder polymer. Die Makromol. Chem. 193 , 1127–1133 (1992)..
Liu, V. & Fan, S. H. S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183 , 2233–2244 (2012)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621