
无数据
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
Hairen Tan (hairentan@nju.edu.cn)
Renxing Lin (rxlin@nju.edu.cn)
Received:21 April 2025,
Revised:2025-09-28,
Accepted:05 November 2025,
Online First:04 January 2026,
Published:28 February 2026
Scan QR Code
Liu, C. S. Y. et al. Light management in monolithic all-perovskite tandem solar cells. Light: Science & Applications, 15, 409-438 (2026).
Liu, C. S. Y. et al. Light management in monolithic all-perovskite tandem solar cells. Light: Science & Applications, 15, 409-438 (2026). DOI: 10.1038/s41377-025-02120-5.
All-perovskite tandem solar cells represent a promising strategy for breaking the Shockley-Queisser limits inherent in single-junction solar cells. Reasonable light management and optical design are necessary for all-perovskite tandem solar cells to improve power conversion efficiency. In this review
the recent progresses in light management for monolithic all-perovskite tandem solar cells are summarized comprehensively. The current-matching conditions
optical challenges
and potential development trajectories for all-perovskite tandem solar cells are investigated. It includes key optical losses
enhancements and strategies for light trapping and light utilization. Ultimately
forward-looking perspectives on future developments are presented. This review aims to offer valuable insights and practical suggestions for improving power conversion efficiency of all-perovskite tandem solar cells from light management techniques.
Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131 , 6050–6051 (2009)..
Zanatta, A. R. The Shockley–Queisser limit and the conversion efficiency of silicon-based solar cells. Results Opt. 9 , 100320 (2022)..
Dong, H. et al. Metal Halide Perovskite for next-generation optoelectronics: progresses and prospects. eLight 3 , 3 (2023)..
Zhou, J. et al. Phase-stable wide-bandgap perovskites with 2D/3D structure for all-perovskite tandem solar cells. ACS Energy Lett. 9 , 1984–1992 (2024)..
Gao, Y. et al. Controlled nucleation and oriented crystallization of methylammonium-free perovskites via in situ generated 2D perovskite phases. Adv. Mater. 36 , 2405921 (2024)..
Guan, H. et al. Efficient 1.77 eV-bandgap perovskite and all-perovskite tandem solar cells enabled by long-alkyl phosphonic acid. Energy Environ. Sci. 17 , 8219–8227 (2024)..
Li, B. et al. Highly efficient and scalable p-i-n perovskite solar cells enabled by poly-metallocene interfaces. J. Am. Chem. Soc. 146 , 13391–13398 (2024)..
Boldyreva, A. G. et al. Effect of gamma-rays on recombination dynamics and defect concentration in a wide bandgap perovskite. Light Adv. Manuf. 5 , 1 (2024)..
Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384 , 189–193 (2024)..
Green, M. A. et al. Solar cell efficiency tables (Version 64). Prog. Photovolt. Res. Appl. 32 , 425–441 (2024)..
Jošt, M., Kegelmann, L., Korte, L. & Albrecht, S. Monolithic perovskite tandem solar cells: A review of the present status and advanced characterization methods toward 30% efficiency. Adv. Energy Mater. 10 , 1904102 (2020)..
Jacobs, D. A. et al. Light management: A key concept in high-efficiency perovskite/silicon tandem photovoltaics. J. Phys. Chem. Lett. 10 , 3159–3170 (2019)..
Islam, M. R. et al. Recent progress and future prospects for light management of all-perovskite tandem solar cells. Adv. Mater. Interfaces 9 , 2101144 (2022)..
Furasova, A. et al. Nanophotonics for perovskite solar cells. Adv. Photonics Res. 3 , 2100326 (2022)..
Jiang, F. et al. A two-terminal perovskite/perovskite tandem solar cell. J. Mater. Chem. A 4 , 1208–1213 (2016)..
Beal, R. E. et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7 , 746–751 (2016)..
Anaya, M., Lozano, G., Calvo, M. E. & Míguez, H. ABX3 perovskites for tandem solar cells. Joule 1 , 769–793 (2017)..
Heo, J. H. & Im, S. H. CH3NH3PbBr3–CH3NH3PbI3perovskite–perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv. Mater. 28 , 5121–5125 (2016)..
Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3 , 828–838 (2018)..
Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2 , 17009 (2017)..
Bush, K. A. et al. Minimizing current and voltage losses to reach 25% efficient monolithic two-terminal perovskite–silicon tandem solar cells. ACS Energy Lett. 3 , 2173–2180 (2018)..
Liu, J. et al. Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635 , 596–603 (2024)..
Han, Q. et al. High-performance perovskite/ Cu(In,Ga)Se2 monolithic tandem solar cells. Science 361 , 904–908 (2018)..
Shen, H. et al. Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy Environ. Sci. 11 , 394–406 (2018)..
Tang, L. et al. Mixed solvents assisted post-treatment enables high-efficiency single-junction perovskite and 4T perovskite/CIGS tandem solar cells. Adv. Sci. 9 , 2201768 (2022)..
Hao, F., Stoumpos, C. C., Chang, R. P. H. & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136 , 8094–8099 (2014)..
Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354 , 861–865 (2016)..
Gao, Y. et al. Performance optimization of monolithic all-perovskite tandem solar cells under standard and real-world solar spectra. Joule 6 , 1944–1963 (2022)..
Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603 , 73–78 (2022)..
Song, Z. et al. Wide-bandgap, low-bandgap, and tandem perovskite solar cells. Semicond. Sci. Technol. 34 , 093001 (2019)..
Yang, Z. et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandemsolar cells. Nat. Commun. 10 , 4498 (2019)..
ElKabbash, M. et al. Fano resonant optical coatings platform for full gamut and high purity structural colors. Nat. Commun. 14 , 3960 (2023)..
Liu, C. et al. Efficient all-perovskite tandem solar cells with low-optical-loss carbazolyl interconnecting layers. Angew. Chem. Int. Ed. 135 , e202313374 (2023)..
Patel, J. B. et al. Light absorption and recycling in hybrid metal halide perovskite photovoltaic devices. Adv. Energy Mater. 10 , 1903653 (2020)..
Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620 , 994–1000 (2023)..
van Eerden, M. et al. Optical analysis of planar multicrystalline perovskite solar cells. Adv. Opt. Mater. 5 , 1700151 (2017)..
Santbergen, R. et al. GenPro4 optical model for solar cell simulation and its application to multijunction solar cells. IEEE J. Photovolt. 7 , 919–926 (2017)..
Bendib, T. et al. Combined optical-electrical modeling of perovskite solar cell with an optimized design. Opt. Mater. 109 , 110259 (2020)..
Qarony, W. et al. Influence of perovskite interface morphology on the photon management in perovskite/silicon tandem solar cells. ACS Appl. Mater. Interfaces 12 , 15080–15086 (2020)..
Hossain, M. I. et al. Atomic layer deposition of metal oxides for efficient perovskite single-junction and perovskite/silicon tandem solar cells. RSC Adv. 10 , 14856–14866 (2020)..
Cui, X. et al. Tailoring carrier dynamics in perovskite solar cells: Via precise dimension and architecture control and interfacial positioning of plasmonic nanoparticles. Energy Environ. Sci. 13 , 1743–1752 (2020)..
Razzaq, A. et al. Application of a genetic algorithm in four-terminal perovskite/crystalline-silicon tandem devices. IEEE J. Photovolt. 10 , 1689–1700 (2020)..
Kar, S., Kaushal, K., Yantara, N. & Mhaisalkar, S. G. Optical simulations in perovskite devices: A critical analysis. ACS Photonics 9 , 3196–3214 (2022)..
Hsu, S. E. et al. Reducing optical reflection loss through textured PEDOT:PSS in hybrid Sn-Pb perovskite solar cells. Sustain. Energy Fuels 8 , 1712–1718 (2024)..
Datta, K. et al. Monolithic all-perovskite tandem solar cells with minimized optical and energetic losses. Adv. Mater. 34 , 2110053 (2022)..
Manzoor, S. et al. Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers. Opt. Expr. 26 , 27441 (2018)..
Subedi, B. et al. Optical and electronic losses arising from physically mixed interfacial layers in perovskite solar cells. ACS Appl. Mater. Interfaces 13 , 4923–4934 (2021)..
Moot, T. et al. Choose your own adventure: Fabrication of monolithic all-perovskite tandem photovoltaics. Adv. Mater. 32 , 2003312 (2020)..
Tavakoli, M. M. et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano 9 , 10287–10295 (2015)..
Dudem, B., Heo, J. H., Leem, J. W., Yu, J. S. & Im, S. H. C. H. 3 NH 3 PbI 3 planar perovskite solar cells with antireflection and self-cleaning function layers. J. Mater. Chem. A 4 , 7573–7579 (2016)..
Li, K. et al. Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices. J. Mater. Chem. A 5 , 969–974 (2017)..
Kim, D. H., Dudem, B., Jung, J. W. & Yu, J. S. Boosting light harvesting in perovskite solar cells by biomimetic inverted hemispherical architectured polymer layer with high haze factor as an antireflective layer. ACS Appl. Mater. Interfaces 10 , 13113–13123 (2018)..
Lee, H. et al. UV-blocking and transparent polydimethylsiloxane film for improving stability of perovskite photovoltaics. ACS Appl. Opt. Mater. 1 , 1208–1216 (2023)..
Wang, X. et al. Reducing optical reflection loss for perovskite solar cells via printable mesopor ous SiO2 antireflection coatings. Adv. Funct. Mater. 32 , 2203872 (2022)..
Keshavarz Hedayati, M. & Elbahri, M. Antireflective coatings: Conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review. Mater. (Basel) 9 , 497 (2016)..
Zandi, S. & Razaghi, M. Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification. Sol. Energy 179 , 298–306 (2019)..
Leijtens, T. et al. Tin-lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustain. Energy Fuels 2 , 2450–2459 (2018)..
Palmstrom, A. F. et al. Enabling flexible all-perovskite tandem solar cells. Joule 3 , 2193–2204 (2019)..
Liu, C. et al. Enhancing the performance of two-terminal all-perovskite tandem solar cells by the optical coupling layer beyond the antireflection function. IEEE Photonics J. 12 , 8400312 (2020)..
Yu, H. et al. Outstanding performance of hole-blocking layer-free perovskite solar cell using hi erarchically porous fluorine-doped tin oxide substrate. Adv. Energy Mater. 7 , 1700749 (2017)..
Seok, H., Park, J., Lan, S. & Kim, H. Sn composition engineering toward the breakthrough of transparent front electrodes for efficient and stable perovskite solar cells. Adv. Energy Mater. 14 , 2301706 (2024)..
Schultes, M. et al. Sputtered transparent electrodes (IO:H and IZO) with low parasitic near-infrared absorption for perovskite-Cu(In,Ga)Se2 tandem solar cells. ACS Appl. Energy Mater. 2 , 7823–7831 (2019)..
Abdollahi Nejand, B. et al. Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency. Nat. Energy 7 , 620–630 (2022)..
Chen, B. et al. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 11 , 1257 (2020)..
Aydin, E. et al. Zr-doped indium oxide (IZRO) transparent electrodes for perovskite-based tandem solar cells. Adv. Funct. Mater. 29 , 1901741 (2019)..
Zhao, X. et al. Aluminum-doped zinc oxide as highly stable electron collec tion layer for perovskite solar cells. ACS Appl. Mater. Interfaces 8 , 7826–7833 (2016)..
Pisoni, S. et al. Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. J. Mater. Chem. A 5 , 13639–13647 (2017)..
Chen, X. et al. Realizing ultrahigh mechanical flexibility and > 15% efficiency of flexible organic solar cells via a “Welding” flexible transparent electrode. Adv. Mater. 32 , 1908478 (2020)..
Zhao, Y., Ding, W., Xiao, Y. & Yang, P. Manipulating the optoelectronic characteristic of AZO films by magnetron sputtering power. Vacuum 210 , 111849 (2023)..
Lee, S. H., Kim, G., Lim, J. W., Lee, K. S. & Kang, M. G. High-performance ZnO:Ga/Ag/ZnO:Ga multilayered transparent electrodes targeting large-scale perovskite solar cells. Sol. Energy Mater. Sol. Cells 186 , 378–384 (2018)..
Seok, H. J. et al. ZnO:Ga-graded ITO electrodes to control interface between PCBM and ITO in planar perovskite solar cells. Sci. Technol. Adv. Mater. 20 , 389–400 (2019)..
Zhang, K. et al. Damp-he at–induced degradation of lightweight silicon heterojunction solar modules with different transparent conductive oxide layers. Prog. Photovolt. Res. Appl. 33 , 541–550 (2025)..
Raiford, J. A. et al. Atomic layer deposition of vanadium oxide to reduce parasitic absorption and improve stability in n–i–p perovskite solar cells for tandems. Sustain. Energy Fuels 3 , 1517–1525 (2019)..
Li, E. et al. Synergistic coassembly of highly wettable and uniform hole-extraction monolayers for scaling-up perovskite solar cells. Adv. Funct. Mater. 30 , 1909509 (2020)..
Guo, P. et al. Fabrication of an ultrathin PEG-modified PEDOT:PSS HTL for high-efficiency Sn–Pb perovskite solar cells by an eco-friendly solvent etching technique. J. Mater. Chem. A 11 , 7246–7255 (2023)..
Zhu, J. et al. Custom-tailored hole transport layer using oxalic acid for high-quality tin-lead perovskites and efficient all-perovskite tandems. Sci. Adv. 10 , eadl2063 (2024)..
Ma, T. et al. Hole transport layer-free low-bandgap perovskite solar cells for efficient all-perovskite tandems. Adv. Mater. 36 , 2308240 (2024)..
Zhao, Y. et al. Reduced 0.418 V V OC -deficit of 1.73 eV wide-bandgap perovskite solar cells assisted by dual chlorides for efficient all-perovskite tandems. Energy Environ. Sci. 16 , 2080–2089 (2023)..
Wang, C. et al. A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells. Nat. Energy 7 , 744–753 (2022)..
Bi, H. et al. Perovskite solar cells consisting of PTAA modified with monomolecular layer and application to all-perovskite tandem solar cells with efficiency over 25%. Adv. Funct. Mater. 33 , 2300089 (2023)..
Zhu, J. et al. A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems. Nat. Energy 8 , 714–724 (2023)..
He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618 , 80–86 (2023)..
Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nat. Energy 4 , 864–873 (2019)..
Gao, H. et al. Thermally stable all-perovskite tandem solar cells fully using metal oxide charge transport layers and tunnel junction. Sol. RRL 5 , 2100814 (2021)..
Wu, P. et al. Efficient and thermally stable all-perovskite tandem solar cells using All-FA narrow-bandgap perovskite and metal-oxide-based tunnel junction. Adv. Energy Mater. 12 , 2202948 (2022)..
Yu, Z. et al. Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5 , 657–665 (2020)..
Zhou, X. et al. Suppressing nonradiative losses in wide-band-gap perovskites affords efficient and printable all-perovskite tandem solar cells with a metal-free charge recombination layer. ACS Energy Lett. 8 , 502–512 (2023)..
Saive, R. Light trapping in thin silicon solar cells: A review on fundamentals and technologies. Prog. Photovolt. Res. Appl. 29 , 1125–1137 (2021)..
Momblona, C. et al. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm. APL Mater. 2 , 081504 (2014) ..
Kirchartz, T. & Rau, U. What makes a good solar cell?. Adv. Energy Mater. 8 , 1703385 (2018)..
Kirchartz, T., Bisquert, J., Mora-Sero, I. & Garcia-Belmonte, G. Classification of solar cells according to mechanisms of charge separation and charge collection. Phys. Chem. Chem. Phys. 17 , 4007–4014 (2015)..
Herz, L. M. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett. 2 , 1539–1548 (2017)..
Tailor, N. K. et al. The effect of dimensionality on the charge carrier mobility of halide perovskites. J. Mater. Chem. A 9 , 21551–21575 (2021)..
Zhao, D. et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3 , 1093–1100 (2018)..
Tong, J. et al. Carrier lifetimes of > 1 ms in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364 , 475–479 (2019)..
Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5 , 870–880 (2020)..
Gao, H. et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383 , 855–859 (2024)..
Schneider, B. W., Lal, N. N., Baker-Finch, S. & White, T. P. Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells. Opt. Expr. 22 , A1422 (2014)..
Santbergen, R. et al. Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell. Opt. Express 24 , A1288 (2016)..
Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367 , 1135–1140 (2020)..
Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624 , 289–294 (2023)..
Xu, C. et al. Self-woven monolayer pol yionic mesh to achieve highly efficient and stable inverted perovskite solar cells. Chem. Eng. J. 428 , 132074 (2022)..
Yu, Z. et al. Solution-processed ternary tin (Ⅱ) alloy as hole-transport layer of Sn–Pb perovskite solar cells for enhanced efficiency and stability. Adv. Mater. 34 , 2205769 (2022)..
Meng, K. et al. Two-dimensional organic-inorganic hybrid perovskite photonic films. Nano Lett. 16 , 4166–4173 (2016)..
Gao, C. et al. In situ artificial wide-bandgap Cs-based recrystallized-arrays for optical optimization of perovskite solar cells. Nano Energy 116 , 108765 (2023)..
Bueno, J., Carretero Palacios, S. & Anaya, M. Synergetic near- and far-field plasmonic effects for optimal all-perovskite tandem solar cells with maximized infrared absorption. J. Phys. Chem. Lett. 15 , 2632–2638 (2024)..
Hörantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2 , 2506–2513 (2017)..
Hussain, S., Khan, A. D., Rashid, M., Ahmad, N. & Khan, H. A. Design and numerical c haracterization of high-performance all-perovskite multi-junction solar cells. Optik 277 , 170714 (2023)..
Lim, J., Park, N. G., Il Seok, S. & Saliba, M. All-perovskite tandem solar cells: from fundamentals to technological progress. Energy Environ. Sci. 17 , 4390–4425 (2024)..
McMeekin, D. P. et al. Solution-processed all-perovskite multi-junction solar cells. Joule 3 , 387–401 (2019)..
Xiao, K. et al. Solution-processed monolithic all-perovskite triple-junction solar cells with efficiency exceeding 20%. ACS Energy Lett. 5 , 2819–2826 (2020)..
Wang, J. et al. 16.8% Monolithic all-perovskite triple-junction solar cells via a universal two-step solution process. Nat. Commun. 11 , 5254 (2020)..
Wang, Z. et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature 618 , 74–79 (2023)..
Wang, J. et al. Halide homogenization for low energy loss in 2-eV-bandgap perovskites and increased efficiency in all-perovskite triple-junction solar cells. Nat. Energy 9 , 70–80 (2024)..
Jiang, Q. et al. Highly efficient bifacial single-junction perovskite solar cells. Joule 7 , 1543–1555 (2023)..
Song, Z., Li, C., Chen, L. & Yan, Y. Perovskite solar cells go bifacial—mutual benefits for efficiency and durability. Adv. Mater. 34 , 2106805 (2022)..
Gu, H. et al. Design optimization of bifacial perovskite minimodules for improved efficiency and stability. Nat. Energy 8 , 675–684 (2023)..
Werner, J. et al. Sputtered rear electrode with broadband transparency for perovskite solar cells. Sol. Energy Mater. Sol. Cells 141 , 407–413 (2015)..
Hanmandlu, C. et al. Bifacial perovskite solar cells featuring semitransparent electrodes. ACS Appl. Mater. Interfaces 9 , 32635–32642 (2017)..
Cheng, Y. et al. High-power bifacial perovskite solar cells with shelf life of over 2000 h. Sci. Bull. 65 , 607–610 (2020)..
Li, N. et al. Room-t emperature sputtered aluminum-doped zinc oxide for semitransparent perovskite solar cells. ACS Appl. Energy Mater. 3 , 9610–9617 (2020)..
De Bastiani, M. et al. Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nat. Energy 6 , 167–175 (2021)..
Li, H. et al. Revealing the output power potential of bifacial monolithic all-perovskite tandem solar cells. eLight 2 , 21 (2022)..
Chen, B. et al. Bifacial all-perovskite tandem solar cells. Sci. Adv. 8 , eadd0377 (2022)..
Gil-Escrig, L. et al. Perovskite/perovskite tandem solar cells in the substrate configuration with potential for bifacial operation. ACS Mater. Lett. 4 , 2638–2644 (2022)..
Park, N.-G., Grätzel, M., Miyasaka, T., Zhu, K. & Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy 1 , 16152 (2016)..
Ge, Y. et al. Suppressing wide-angle light loss and non-radiative recombination for efficient perovskite solar cells. Nat. Photonics 19 , 170–177 (2025)..
Huang, C. et al. Applications of rare-earth-based up-conversion and down-conversion in perovskite solar cells: A review. Sol. RRL 7 , 2300518 (2023)..
Singh, R. et al. Harvesting sub-bandgap photons via upconversion for perovskite solar cells. ACS Appl. Mater. Interfaces 13 , 54874–54883 (2021)..
He, M. et al. Monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells. Angew. Chem. Int. Ed. 55 , 4280–4284 (2016)..
Ding, N. et al. Upconversion ladder enabled super-sensitive narrowband near-infrared photodetectors based on rare earth doped florine perovskite nanocrystals. Nano Energy 76 , 105103 (2020)..
Zhou, D. et al. Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells. J. Mater. Chem. A 5 , 16559–16567 (2017)..
Liang, L. et al. Optical management with nanoparticles for a light conversion efficiency enhancement in inorganic γ-CsPbI 3 solar cells. Nano Lett. 19 , 1796–1804 (2019)..
Schoenauer Sebag, M. et al. Microscopic evidence of upconversion-induced near-infrared light harvest in hybrid perovskite solar cells. ACS Appl. Energy Mater. 1 , 3537–3543 (2018)..
Xu, F. et al. High-performance perovskite solar cells based on NaCsWO3@NaYF4@NaYF4:Yb,Er upconversion nanoparticles. ACS Appl. Mater. Interfaces 13 , 2674–2684 (2021)..
Chen, C., Zheng, S. & Song, H. Photon management to reduce energy loss in perovskite solar cells. Chem. Soc. Rev. 50 , 7250–7329 (2021)..
Tang, J., Zhang, Y., Zheng, G., Gou, J. & Wu, F. Improving the NIR light-harvesting of perovskite solar cell with upconversion fluorotellurite glass. J. Am. Ceram. Soc. 101 , 1923–1928 (2018)..
Li, H. et al. Near-infrared and ultraviolet to visible photon conversion for full spectrum response perovskite solar cells. Nano Energy 50 , 699–709 (2018)..
Tawalare, P. K., Lohe, P. P. & Moharil, S. V. Phosphors for improving performance of perovskite solar cells. AIP Conf. Proc. 2100 , 020036 (2019)..
Li, K. et al. Micronuclear battery based on a coalescent energy transducer. Nature 633 , 811–815 (2024)..
Wang, H. et al. Bifacial, color-tunable semitransparent perovskite solar cells for building-integrated photovoltaics. ACS Appl. Mater. Interfaces 12 , 484–493 (2020)..
Deng, K., Liu, Z., Wang, M. & Li, L. Nanoimprinted grating-embedded perovskite solar cells with improved light management. Adv. Funct. Mater. 29 , 1900830 (2019)..
Boccard, M. & Ballif, C. Influence of the subcell properties on the fill factor of two-terminal perovskite-silicon tandem solar cells. ACS Energy Lett. 5 , 1077–1082 (2020)..
Zheng, L. et al. Inverted perovskite/silicon V-shaped tandem solar cells with 27.6% efficiency via self-assembled monolayer-modified nickel oxide layer. J. Mater. Chem. A 10 , 7251–7262 (2022)..
Karabchevsky, A. Perovskite beyond solar: toward novel developments of lasers and detectors for photonic circuits. Light Sci. Appl. 12 , 160 (2023)..
Wang, Y. et al. Cross-linked hole transport layers for high-efficiency perovskite tandem solar cells. Sci. China Chem. 64 , 2025–2034 (2021)..
Yu, Z. et al. Gradient doping in Sn–Pb perovskites by barium ions for efficient single-junction and tandem solar cells. Adv. Mater. 34 , 2110351 (2022)..
Wen, J. et al. Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv. Mater. 34 , 2110356 (2022)..
Tong, J. et al. Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 7 , 642–651 (2022)..
Zhou, J. et al. Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells. Nat. Commun. 15 , 2324 (2024)..
Wang, Y. et al. Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635 , 867–873 (2024)..
Yang, M. et al. Sn-Pb perovskite with strong light and oxygen stability for all-perovskite tandem solar cells. Adv. Mater. 37 , 202415627 (2025)..
Liu, Z. et al. All-perovskite tandem solar cells achieving > 29% efficiency with improved (100) orientation in wide-bandgap perovskites. Nat. Mater. 24 , 252–259 (2025)..
Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7 , 708–717 (2022)..
Lai, H. et al. High-performance flexible all-perovskite tandem solar cells with reduced VOC-deficit in wide-bandgap subcell. Adv. Energy Mater. 12 , 2202438 (2022)..
Li, T. et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8 , 610–620 (2023)..
Bi, H. et al. All-perovskite tandem solar cells approach 26.5% efficiency by employing wide bandgap lead perovskite solar cells with new monomolecular hole transport layer. ACS Energy Lett. 8 , 3852–3859 (2023)..
Xiao, K. et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376 , 762–767 (2022)..
Sun, H. et al. Scalable solution-processed hybrid electron transport layers for efficient all-perovskite tandem solar modules. Adv. Mater. 36 , 2308706 (2024)..
Jiang, X. et al. Multifunctional regulation of highly orientated tin-lead alloyed perovskite solar cells. ACS Energy Lett. 8 , 1068–1075 (2023)..
Luo, J. et al. Improved carrier management via a multifunctional modifier for high-quality low-bandgap Sn–Pb perovskites and efficient all-perovskite tandem solar cells. Adv. Mater. 35 , 2300352 (2023)..
Liu, Y. et al. Synergistic immobilization of ions in mixed tin-lead and all-perovskite tandem solar cells. Nat. Commun. 16 , 3477 (2025)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621