
无数据
1.Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, China
2.Hubei Optical Fundamental Research Center, Wuhan, Hubei, China
3.Optics Valley Laboratory, Hubei, Wuhan, Hubei, China
Jian Wang (jwang@hust.edu.cn)
Received:10 March 2025,
Revised:2025-11-12,
Accepted:23 November 2025,
Published Online:01 January 2026,
Published:31 January 2026
Scan QR Code
Li, K. et al. Exceptional-point-encirclement emulation tailoring: multidimensional asymmetric switching of all-fiber devices. Light: Science & Applications, 15, 119-129 (2026).
Li, K. et al. Exceptional-point-encirclement emulation tailoring: multidimensional asymmetric switching of all-fiber devices. Light: Science & Applications, 15, 119-129 (2026). DOI: 10.1038/s41377-025-02144-x.
In non-Hermitian systems
the dynamic encircling of exceptional points (EPs) engenders intriguing chiral phenomena
where the resultant state characteristics are intrinsically dependent upon the encircling handedness. An ingenious approach using simple leaky optical elements has been presented to emulate this chiral behavior without physically encircling an EP. This innovative simplification of EP properties enables a more straightforward implementation of asymmetric switching of polarization and path. Given that photons inherently possess multiple physical degrees of freedom
the research focus has shifted from single-dimensional to multidimensional asymmetric switching. Hence
there is a fundamental challenge of how to achieve multidimensional asymmetric switching through a simple and universally applicable architecture. Here
we propose and experimentally demonstrate a novel topology-optimized architecture
termed EP-encirclement emulation tailoring
enabling multidimensional asymmetric switching. Theoretical analysis reveals that our architecture eliminates the 3-dB inherent loss in conventional architecture by replacing couplers with (de)multiplexers. Building upon this architecture
we harness all-fiber devices to implement a high-performance asymmetric switching of polarization
mode
and orbital angular momentum (OAM). To our knowledge
this is the first experimental demonstration of asymmetric OAM switching to date. Our work provides an efficient topology architecture for emulating dynamic EP encirclement
paving the way for universal and flexible asymmetric switching devices.
El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14 , 11–19 (2018)..
Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80 , 5243–5246 (1998)..
Liu, T., Guo, C., Li, W. & Fan, S. Thermal photonics with broken symmetries. eLight 2 , 25 (2022)..
Ashida, Y., Gong, Z. P. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69 , 249–435 (2020)..
Kawabata, K. et al. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9 , 041015 (2019)..
Kim, C. et al. Parity-time symmetry enabled ultra-efficient nonlinear optical signal processing. eLight 4 , 6 (2024)..
Zhong, Q. et al. Winding around non-Hermitian singularities. Nat. Commun. 9 , 4808 (2018)..
Song, W. G. et al. Breakup and recovery of topological ze ro modes in finite non-Hermitian optical lattices. Phys. Rev. Lett. 123 , 165701 (2019)..
Zhou, H. Y. et al. Exceptional surfaces in PT -symmetric non-Hermitian photonic systems. Optica 6 , 190–193 (2019)..
Xu, Y. H. et al. Subwavelength control of light transport at the exceptional point by non-Hermitian metagratings. Sci. Adv. 9 , eadf3510 (2023)..
Choi, Y. et al. Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators. Nat. Commun. 9 , 2182 (2018)..
Lee, H. et al. Chiral exceptional point and coherent suppression of backscattering in silicon microring with low loss Mie scatterer. eLight 3 , 20 (2023)..
Miri, M. A. & Alù, A. Exceptional points in optics and photonics. Science 363 , eaar7709 (2019)..
Ding, K. et al. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Phys. Rev. X 6 , 021007 (2016)..
Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525 , 354–358 (2015)..
Yin, X. B. & Zhang, X. Unidirectional light propagation at exceptional points. Nat. Mater. 12 , 175–177 (2013)..
Lin, Z. et al. Unidirectional Invisibility Induced by PT -symmetric periodic structures. Phys. Rev. Lett. 106 , 213901 (2011)..
Ramezani, H. et al. PT -symmetric talbot effects. Phys. Rev. Lett. 109 , 033902 (2012)..
Weimann, S. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16 , 433–438 (2017)..
Xu, H. et al. Topological energy transfer in an optomechanical system with exceptional points. Nature 537 , 80–83 (2016)..
Ergoktas, M. S. et al. Topological engineering of terahertz light using electrically tunable exceptional point singularities. Science 376 , 184–188 (2022) ..
Wiersig, J. Review of exceptional point-based sensors. Photonics Res. 8 , 1457–1467 (2020)..
Wiersig, J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112 , 203901 (2014)..
Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548 , 187–191 (2017)..
Hokmabadi, M. P. et al. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576 , 70–74 (2019)..
Mao, W. B. et al. Exceptional–point–enhanced phase sensing. Sci. Adv. 10 , eadl5037 (2024)..
Xiao, Z. C. et al. Enhanced sensing and nondegraded thermal noise performance based on PT -symmetric electronic circuits with a sixth-order exceptional point. Phys. Rev. Lett. 123 , 213901 (2019)..
Chen, W. J. et al. Exceptional points en hance sensing in an optical microcavity. Nature 548 , 192–196 (2017)..
Zhao, W. Z. et al. Exceptional points induced by unidirectional coupling in electronic circuits. Nat. Commun. 15 , 9907 (2024)..
Kononchuk, R. et al. Exceptional-point-based accelerometers with enhanced signal-to-noise ratio. Nature 607 , 697–702 (2022)..
Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537 , 76–79 (2016)..
Hassan, A. U. et al. Dynamically encircling exceptional points: exact evolution and polarization state conversion. Phys. Rev. Lett. 118 , 093002 (2017)..
Li, A. D. et al. Hamiltonian hopping for efficient chiral mode switching in encircling exceptional points. Phys. Rev. Lett. 125 , 187403 (2020)..
Li, A. D. et al. Riemann-encircling exceptional points for efficient asymmetric polarization-locked devices. Phys. Rev. Lett. 129 , 127401 (2022)..
Liu, Q. J. et al. Efficient mode transfer on a compact silicon chip by encircling moving exceptional points. Phys. Rev. Lett. 124 , 153903 (2020)..
Wei, Y. X. et al. Anti-parity-time symmetry enabled on-chip chiral polarizer. Photonics Res. 10 , 76 (2022)..
Nasari, H. et al. Observation of chiral state transfer without encircling an exceptional point. Nature 605 , 256–261 (2022)..
Qi, H. X. et al. Dynamically encircling exceptional points in different Riemann sheets for orbital angular momentum topological charge conversion. Phys. Rev. Lett. 132 , 243802 (2024)..
Wang, S. W. et al. An ultralow crosstalk and broadband subwavelength grating-assisted chiral mode converter by encircling exceptional points. Appl. Phys. Lett. 123 , 241103 (2023)..
Yu, F. et al. General rules governing the dynamical encircling of an arbitrary number of exceptional points. Phys. Rev. Lett. 127 , 253901 (2021)..
Zhang, X. L. & Chan, C. T. Dynamically encircling exceptional points in a three-mode waveguide system. Commun. Phys. 2 , 63 (2019)..
Feng, Z. Y. & Sun, X. K. Harnessing dynamical encircling of an exceptional point in anti-PT-symmetric integrated photonic systems. Phys. Rev. Lett. 129 , 273601 (2022)..
Li, A. D. et al. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol. 18 , 706–720 (2023)..
Shu, X. Q. et al. Fast encirclement of an exceptional point for highly efficient and compact chiral mode converters. Nat. Commun. 13 , 2123 (2022)..
Khurgin, J. B. et al. Emulating exceptional-point encirclements using imperfect (leaky) photonic components: asymmetric mode-switching and omni-polarizer action. Optica 8 , 563–569 (2021)..
Choi, Y. S. et al. Broadband optical nonreciprocity by emulation of nonlinear non-Hermitian time-asymmetric loop. Commun. Phys. 7 , 263 (2024)..
Kim, S. & Bahl, G. Exceptional behaviour without exceptional effort. Nat. Photonics 15 , 556–557 (2021)..
Winzer, P. J. Making spatial multiplexing a reality. Nat. Photonics 8 , 345–348 (2014)..
Li, K. et al. Fiber–chip-fiber mode/polarization/wavelength transmission and processing with few-mode fiber, (de)Multiplexing SiO 2 chip and ROADM Si chip. Laser Photonics Rev. 18 , 2300489 (2024)..
Zhou, W. et al. All-fiber function devices for twisted lights. Opt. Express 31 , 43438–43448 (2023)..
Chuang, S. L. A coupled mode formulation by reciprocity and a variational principle. J. Lightwave Technol. 5 , 5–15 (1987)..
Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 7 , 354–362 (2013)..
Chang, W. J. et al. Ultra-compact mode (de) multiplexer based on subwavelength asymmetric Y-junction. Opt. Express 26 , 8162–8170 (2018)..
He, Y. et al. Ultra-compact and broadband silicon polarizer employing a nanohole array structure. Opt. Lett. 46 , 194–197 (2 021)..
He, C., Shen, Y. & Forbes, A. Towards higher-dimensional structured light. Light Sci. Appl. 11 , 205 (2022)..
Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics 18 , 15–25 (2024)..
Shen, Y., Hou, Y., Papasimakis, N. & Zheludev, N. I. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun. 12 , 5891 (2021)..
Shen, Y. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8 , 90 (2019)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621