1.Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
2.Pengcheng Laboratory, Shenzhen 518055, China
3.Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
Qinghai Song (qinghai.song@hit.edu.cn)
纸质出版日期:2022-10-31,
网络出版日期:2022-10-06,
Scan QR Code
Guiding flow of light with supersymmetry[J]. LSA, 2022,11(10):2269-2270.
Huang, C. & Song, Q. H. Guiding flow of light with supersymmetry. Light: Science & Applications, 11, 2269-2270 (2022).
Guiding flow of light with supersymmetry[J]. LSA, 2022,11(10):2269-2270. DOI: 10.1038/s41377-022-00988-1.
Huang, C. & Song, Q. H. Guiding flow of light with supersymmetry. Light: Science & Applications, 11, 2269-2270 (2022). DOI: 10.1038/s41377-022-00988-1.
The continuous supersymmetry transformation is applied to the silicon waveguides
and the guidance and conversion of any mode in a wide spectral range are successfully realized in experiments. This proves its great potential in optical spatial mode modulation and space division multiplexing in optical communication.
U. Leonhardt. Optical conformal mapping. Science, 2006. 3121777-1780. DOI:10.1126/science.1126493http://doi.org/10.1126/science.1126493.
J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 2006. 3121780-1782. DOI:10.1126/science.1125907http://doi.org/10.1126/science.1125907.
J. Yim, 等. Broadband continuous supersymmetric transformation: a new paradigm for transformation optics. eLight, 2022. 216DOI:10.1186/s43593-022-00023-1http://doi.org/10.1186/s43593-022-00023-1.
E. Witten. Dynamical breaking of supersymmetry. Nucl. Phys. B, 1981. 188513-554. DOI:10.1016/0550-3213(81)90006-7http://doi.org/10.1016/0550-3213(81)90006-7.
Cooper, F., Khare, A. & Sukhatme, U. Supersymmetry in Quantum Mechanics. (World Scientific, Singapore, River Edge, NJ, 2001).
M. A. Miri, 等. Supersymmetric optical structures. Phys. Rev. Lett., 2013. 110233902DOI:10.1103/PhysRevLett.110.233902http://doi.org/10.1103/PhysRevLett.110.233902.
L. Stefano. Supersymmetric transparent optical intersections. Opt. Lett., 2015. 40463-466. DOI:10.1364/OL.40.000463http://doi.org/10.1364/OL.40.000463.
M. Heinrich, 等. Observation of supersymmetric scattering in photonic lattices. Opt. Lett., 2014. 396130-6133. DOI:10.1364/OL.39.006130http://doi.org/10.1364/OL.39.006130.
M. Heinrich, 等. Supersymmetric mode converters. Nat. Commun., 2014. 53698DOI:10.1038/ncomms4698http://doi.org/10.1038/ncomms4698.
R. El-Ganainy, 等. Supersymmetric laser arrays. Phys. Rev. A, 2015. 9233818-33818. DOI:10.1103/PhysRevA.92.033818http://doi.org/10.1103/PhysRevA.92.033818.
M. P. Hokmabadi, 等. Supersymmetric laser arrays. Science, 2019. 363623-626. DOI:10.1126/science.aav5103http://doi.org/10.1126/science.aav5103.
X. Qiao, 等. Higher-dimensional supersymmetric microlaser arrays. Science, 2021. 372403-408. DOI:10.1126/science.abg3904http://doi.org/10.1126/science.abg3904.
Walasik, W. et al. Continuous supersymmetric transformation for photonic design. https://doi.org/10.48550/arXiv.1901.08965https://doi.org/10.48550/arXiv.1901.08965 (2019).
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构