1.School of Physics and Engineering, ITMO University, Lomonosova 9, Saint Petersburg 191002, Russia
2.Center for Nanotechnologies, Alferov University, Khlopina 8/3, Saint Petersburg 194021, Russia
3.Higher School of Engineering Physics, Peter the Great Saint Petersburg Polytechnic University, Politekhnicheskaya 29, Saint Petersburg 195251, Russia
Dmitry Zuev (d.zuev@metalab.ifmo.ru)
纸质出版日期:2023-11-30,
网络出版日期:2023-09-19,
收稿日期:2022-12-09,
修回日期:2023-07-28,
录用日期:2023-08-17
Scan QR Code
All-optical generation of static electric field in a single metal-semiconductor nanoantenna[J]. LSA, 2023,12(11):2350-2362.
Sun, Y. L. et al. All-optical generation of static electric field in a single metal-semiconductor nanoantenna. Light: Science & Applications, 12, 2350-2362 (2023).
All-optical generation of static electric field in a single metal-semiconductor nanoantenna[J]. LSA, 2023,12(11):2350-2362. DOI: 10.1038/s41377-023-01262-8.
Sun, Y. L. et al. All-optical generation of static electric field in a single metal-semiconductor nanoantenna. Light: Science & Applications, 12, 2350-2362 (2023). DOI: 10.1038/s41377-023-01262-8.
Electric field is a powerful instrument in nanoscale engineering
providing wide functionalities for control in various optical and solid-state nanodevices. The development of a single optically resonant nanostructure operating with a charge-induced electrical field is challenging
but it could be extremely useful for novel nanophotonic horizons. Here
we show a resonant metal-semiconductor nanostructure with a static electric field created at the interface between its components by charge carriers generated via femtosecond laser irradiation. We study this field experimentally
probing it by second-harmonic generation signal
which
in our system
is time-dependent and has a non-quadratic signal/excitation power dependence. The developed numerical models reveal the influence of the optically induced static electric field on the second harmonic generation signal. We also show how metal work function and silicon surface defect density for different charge carrier concentrations affect the formation of this field. We estimate the value of optically-generated static electric field in this nanoantenna to achieve ≈10
8
V/m. These findings pave the way for the creation of nanoantenna-based optical memory
programmable logic and neuromorphic devices.
Baek, S. -hC. et al. Complementary logic operation based on electric-field controlled spin–orbit torques.Nat. Electron.1, 398–403 (2018)..
Chu, Y. -H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic.Nat. Mater.7, 478–482 (2008)..
Song, Y., Kim, S., Heller, M. J.&Huang, X. Dna multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization.Nat. Commun.9, 1–8 (2018)..
Xiong, X. et al. A transverse tunnelling field-effect transistor made from a van der Waals heterostructure.Nat. Electron.3, 106–112 (2020)..
Zeng, B. et al. Electric field gradient-controlled domain switching for size effect-resistant multilevel operations in Hfo2-based ferroelectric field-effect transistor.Adv. Funct. Mater.31, 2011077 (2021)..
Ahmed, F. et al. High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering.Adv. Funct. Mater.27, 1604025 (2017)..
Zhao, X. et al. Transistors and logic circuits based on metal nanoparticles and ionic gradients.Nat. Electron.4, 109–115 (2021)..
Karabchevsky, A., Katiyi, A., Ang, A. S.&Hazan, A. On-chip nanophotonics and future challenges.Nanophotonics9, 3733–3753 (2020)..
Grinblat, G. et al. Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation.Sci. Adv.6, eabb3123 (2020)..
Mazzanti, A. et al. All-optical modulation with dielectric nanoantennas: multiresonant control and ultrafast spatial inhomogeneities.Small Sci.1, 2000079 (2021)..
Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature.Nature597, 493–497 (2021)..
Won, R. Integrating silicon photonics.Nat. Photonics4, 498–499 (2010)..
Shreiner, R., Hao, K., Butcher, A.&High, A. A. Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor.Nat. Photonics16, 330–336 (2022)..
Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor.Nat. Nanotechnol.10, 407–411 (2015)..
Farmakidis, N. et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality.Sci. Adv.5, eaaw2687 (2019)..
Wang, Y. et al. Electrical tuning of phase-change antennas and metasurfaces.Nat. Nanotechnol.16, 667–672 (2021)..
Mihaychuk, J., Bloch, J., Liu, Y.&Van Driel, H. Time-dependent second-harmonic generation from the Si–Sio2interface induced by charge transfer.Opt. Lett.20, 2063–2065 (1995)..
Wang, W. et al. Coupled electron-hole dynamics at the Si/Sio2interface.Phys. Rev. Lett.81, 4224 (1998)..
Abdelwahab, I. et al. Giant second-harmonic generation in ferroelectric NbOI2.Nat. Photonics16, 644–650 (2022)..
Chen, S., Li, K. F., Li, G., Cheah, K. W.&Zhang, S. Gigantic electric-field-induced second harmonic generation from an organic conjugated polymer enhanced by a band-edge effect.Light Sci. Appl.8, 1–6 (2019)..
Timurdogan, E., Poulton, C. V., Byrd, M.&Watts, M. Electric field-induced second-order nonlinear optical effects in silicon waveguides.Nat. Photonics11, 200–206 (2017)..
Yu, H., Talukdar, D., Xu, W., Khurgin, J. B.&Xiong, Q. Charge-induced second-harmonic generation in bilayer WSe2.Nano Lett.15, 5653–5657 (2015)..
Vampa, G. et al. Strong-field optoelectronics in solids.Nat. Photonics12, 465–468 (2018)..
Ren, M. -L., Berger, J. S., Liu, W., Liu, G.&Agarwal, R. Strong modulation of second-harmonic generation with very large contrast in semiconducting CdS via high-field domain.Nat. Commun.9, 186 (2018)..
Alloatti, L. et al. 100 ghz silicon–organic hybrid modulator.Light Sci. Appl.3, e173–e173 (2014)..
Wang, Y. et al. Giantall-optical modulation of second-harmonic generation mediated by dark excitons.ACS Photonics8, 2320–2328 (2021)..
Pogna, E. A. A. et al. Ultrafast, all optically reconfigurable, nonlinear nanoantenna.ACS Nano15, 11150–11157 (2021)..
Wen, X., Xu, W., Zhao, W., Khurgin, J. B.&Xiong, Q. Plasmonic hot carriers-controlled second harmonic generation in WSe2bilayers.Nano Lett.18, 1686–1692 (2018)..
Cazzanelli, M.&Schilling, J. Second order optical nonlinearity in silicon by symmetry breaking.Appl. Phys. Rev.3, 011104 (2016)..
Makarov, S. V. et al. Efficient second-harmonic generation in nanocrystalline silicon nanoparticles.Nano Lett.17, 3047–3053 (2017)..
Mochán, W. L., Maytorena, J. A., Mendoza, B. S.&Brudny, V. L. Second-harmonic generation in arrays of spherical particles.Phys. Rev. B68, 085318 (2003)..
Cazzanelli, M. et al. Second-harmonic generation in silicon waveguides strained by silicon nitride.Nat. Mater.11, 148–154 (2012)..
Fomenko, V., Lami, J. -F.&Borguet, E. Nonquadratic second-harmonic generation from semiconductor-oxide interfaces.Phys. Rev. B63, 121316 (2001)..
Aktsipetrov, O. et al. dc-electric-field-induced second-harmonic generation in Si(111)-Sio2-cr metal-oxide-semiconductor structures.Phys. Rev. B54, 1825 (1996)..
Yeganeh, M. S., Qi, J.&Yodh, A. G. Interfacial electronic trap lifetimes studied by the photomodulation of second-harmonic generation processes.J. Opt. Soc. Am. B10, 2093–2099 (1993)..
Larin, A. et al. Plasmonic nanosponges filled with silicon for enhanced white light emission.Nanoscale12, 1013–1021 (2020)..
Zywietz, U., Evlyukhin, A. B., Reinhardt, C.&Chichkov, B. N. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses.Nat. Commun.5, 1–7 (2014)..
Habenicht, A., Olapinski, M., Burmeister, F., Leiderer, P.&Boneberg, J. Jumping nanodroplets.Science309, 2043–2045 (2005)..
Egry, I., Lohoefer, G.&Jacobs, G. Surface tension of liquid metals: results from measurements on ground and in space.Phys. Rev. Lett.75, 4043 (1995)..
Naidich, J. V. The wettability of solids by liquid metals. InProgress in Surface and Membrane Science, Vol. 14 (eds Cadenhead, D. A.&Danielli, J. F. ) 353–484 (Academic Press, New York, 1981).
Lide, D. R.CRC Handbook of Chemistry and Physics, Vol. 85 (CRC Press, 2004).
Johnson, P. B.&Christy, R. -W. Optical constants of the noble metals.Phys. Rev. B6, 4370 (1972)..
Köster, U. Crystallization of amorphous silicon films.Phys. Status Solidi (a)48, 313–321 (1978)..
Sun, Y. et al. Approach for fine-tuning of hybrid dimer antennas via laser melting at the nanoscale.Ann. Phys.529, 1600272 (2017)..
Renaut, C. et al. Reshaping the second-order polar response of hybrid metal–dielectric nanodimers.Nano Lett.19, 877–884 (2019)..
Zograf, G. P., Petrov, M. I., Makarov, S. V.&Kivshar, Y. S. All-dielectric thermonanophotonics.Adv. Opt. Photonics13, 643–702 (2021)..
Hu, H. et al. Precise determination of the crystallographic orientations in single ZnS nanowires by second-harmonic generation microscopy.Nano Lett.15, 3351–3357 (2015)..
Yeganeh, M., Qi, J., Yodh, A.&Tamargo, M. Interfacial electronic trap lifetimes studied by the photomodulation of second-harmonic generation processes.JOSA B10, 2093–2099 (1993)..
Bristow, A. D., Rotenberg, N.&Van Driel, H. M. Two-photon absorption and kerr coefficients of silicon for 850–2200 nm.Appl. Phys. Lett.90, 191104 (2007)..
Van Roosbroeck, W. Theory of flow of electrons and holes in germanium and other semiconductors.Bell Syst. Tech. J.29, 560–607 (1950)..
Levinshtein, M.Handbook Series on Semiconductor Parameters, Vol. 1 (World Scientific, 1997).
Sasikala, V.&Chitra, K. All optical switching and associated technologies: a review.J. Opt.47, 307–317 (2018)..
Minzioni, P. et al. Roadmap on all-optical processing.J. Opt.21, 063001 (2019)..
Zuev, D. A. et al. Fabrication of hybrid nanostructures via nanoscale laser-induced reshaping for advanced light manipulation.Adv. Mater.28, 3087–3093 (2016)..
Green, M. A. Self-consistent optical parameters of intrinsic silicon at 300 k including temperature coefficients.Sol. Energy Mater. Sol. Cells92, 1305–1310 (2008)..
McPeak, K. et al. Plasmonic films can easily be better: rules and recipes.ACS Photonics2, 326–333 (2015)..
Baranov, D. G. et al. Nonlinear transient dynamics of photoexcited resonant silicon nanostructures.ACS Photonics3, 1546–1551 (2016)..
Singh, D., Singh, J., Mishra, P., Tiwari, R.&Srivastava, O. Synthesis, characterization and application of semiconducting oxide (Cu2O and ZnO) nanostructures.Bull. Mater. Sci.31, 319–325 (2008)..
Levinshtein, M., Rumyantsev, S.&Shur, M.Handbook of Semiconductor Material Parameters, Vol. 1: Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb(World Scientific Publishing Company, 1996).
Lide, D. R.CRC Handbook of Chemistry and Physics CRC(Taylor&Francis, 2008).
Krasnok, A., Tymchenko, M.&Alù, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics.Mater. Today21, 8–21 (2018)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构