Abstract:Introduction of the stepwise phase dispersion compensation layer allowed broadband achromatic metalens to have a high numerical aperture, which enabled high-resolution metalens imaging.
Abstract:A recent study demonstrated advancements in quantum computing by applying it to address a non-Hermitian optical manipulation problem. The emergence of exceptional points and the dynamics of optically trapped single or multiple particles were simulated using a quantum computing approach.
Abstract:A photon-number-resolving LiDAR approach and an active photon-number-filtering algorithm are proposed and demonstrated. This opens a new avenue for the development of single-photon LiDAR and relevant techniques to scientific study and real-world applications.
Abstract:Ultrafast tip-based microscopy has evolved to meet three critical parameters in optical characterization: spatial, spectral, and temporal resolution. This advancement provides deep insights into light-matter interactions in both real time and real space. In particular, it allows direct observation of polaritons, quantum states, and nonequilibrium dynamics, especially in low-dimensional quantum materials.
Abstract:Automatic mode-locking techniques, the integration of intelligent technologies with nonlinear optics offers the promise of on-demand intelligent control, potentially overcoming the inherent limitations of traditional ultrafast pulse generation that have predominantly suffered from the instability and suboptimality of open-loop manual tuning. The advancements in intelligent algorithm-driven automatic mode-locking techniques primarily are explored in this review, which also revisits the fundamental principles of nonlinear optical absorption, and examines the evolution and categorization of conventional mode-locking techniques. The convergence of ultrafast pulse nonlinear interactions with intelligent technologies has intricately expanded the scope of ultrafast photonics, unveiling considerable potential for innovation and catalyzing new waves of research breakthroughs in ultrafast photonics and nonlinear optics characters.
Abstract:Spin photonics revolutionizes photonic technology by enabling precise manipulation of photon spin states, with spin-decoupled metasurfaces emerging as pivotal in complex optical field manipulation. Here, we propose a folded-path metasurface concept that enables independent dispersion and phase control of two opposite spin states, effectively overcoming the limitations of spin photonics in achieving broadband decoupling and higher integration levels. This advanced dispersion engineering is achieved by modifying the equivalent length of a folded path, generated by a virtual reflective surface, in contrast to previous methods that depended on effective refractive index control by altering structural geometries. Our approach unlocks previously unattainable capabilities, such as achieving achromatic focusing and achromatic spin Hall effect using the rotational degree of freedom, and generating spatiotemporal vector optical fields with only a single metasurface. This advancement substantially broadens the potential of metasurface-based spin photonics, extending its applications from the spatial domain to the spatiotemporal domain.
Abstract:Mediated by the interactions with quantum vacuum fields, a probe laser field propagating in a nonlinear optical medium can generate new pair of light fields over a broad spectral range via spontaneous parametric process. Such process is inherently independent of the incident direction of light and reciprocal thus far, due to the direction-independent field-vacuum interactions. In this work, we experimentally demonstrate within sodium atomic vapors that such spontaneous parametric process can be nonreciprocal by unidirectionally coupling it to another pumped four-wave mixing process. Thanks to the broad bandwidth of the spontaneous parametric process, in combination with the Doppler and power-induced broadening of atomic energy levels, we achieve optical isolation with isolation ratio > 25 dB over a bandwidth larger than 100 GHz. Considering that both spontaneous parametric processes and the pumped four-wave mixing have been realized in diverse solid photonic platforms, the demonstrated concept can motivate further explorations in the design of integrated magnetic-free broadband optical nonreciprocity via the interactions between nonlinear optical processes.
Shijie Zhan, Benxuan Li, Tong Chen, Yudi Tu, Hong Ji, Diyar Mousa Othman, Mingfei Xiao, Renjun Liu, Zuhong Zhang, Ying Tang, Wenlong Ming, Meng Li, Hang Zhou, Bo Hou
DOI:10.1038/s41377-025-01853-7
Abstract:The surging demand and adoption of infrared photodetectors (IRPDs) in sectors of imaging, mobile, healthcare, automobiles, and optical communication are hindered by the prohibitive costs of traditional IRPD materials such as InGaAs and HgCdTe. Quantum dots (QDs), especially lead chalcogenide (PbS) QDs, represent the next-generation low-bandgap semiconductors for near-infrared (NIR) detection due to their high optical absorption coefficient, tunable bandgap, low fabrication costs, and device compatibility. Innovative techniques such as ligand exchange processes have been proposed to boost the performance of PbS QDs photodetectors, mostly using short ligands like 1, 2-ethanedithiol (EDT) and tetrabutylammonium iodide (TBAI). Our study explores the use of long-chain dithiol ligands to enhance the responsivity of PbS QDs/InGaZnO phototransistors. Long-chain dithiol ligands are found to suppress horizontal electron transport/leakage and electron trapping, which is beneficial for responsivity. Utilizing a novel ligand-exchange technique with 1, 10-decanedithiol (DDT), we develop high-performance hybrid phototransistors with detectivity exceeding 1014 Jones. Based on these phototransistors, we demonstrate image communication through a NIR optical communication system. The long-ligand PbS QDs/InGaZnO hybrid phototransistor demonstrates significant potential for NIR low-dose imaging and optical communication, particularly in scenarios requiring the detection of weak light signals at low frequencies.
Abstract:Micro/nanorobots based on immune cells show great potential for addressing challenging biological and biomedical conditions. However, their powerful innate immune functions, particularly the phagocytosis capabilities, remain a big challenge to fully leverage with the current designs of immune cell-based microrobots. Herein, we report a light-powered phagocytic macrophage microrobot (phagobot), which is capable of robotic navigation toward specific foreign bio-threats and executing precise phagocytosis of these targeted entities under light control. Without genetic modification or nanoengineering of macrophages, the phagobot's "wake-up" program is achieved through direct activation of a resting-state macrophage by a tightly focused near-infrared (NIR) light beam. The phagobot exhibits robotic steering and directional navigation controlled by optical manipulation of the extended pseudopodia within the activated macrophage. It can further execute targeted phagocytic clearance tasks via engulfing various foreign bio-threats, including nanoplastics, microbials, and cancer cell debris. Notably, the phagobot can be constructed in a living larval zebrafish through optical activation and manipulation of the endogenous macrophage, which also exhibits controllable navigation and targeted phagocytic capabilities in vivo. With the intrinsic immune functions of macrophages, our light-powered phagobot represents a novel form of intelligent immune cell-based microrobots, holding many new possibilities for precise immune regulation and treatment for immune-related diseases.
Philippe Roelli, Isabel Pascual Robledo, Iris Niehues, Javier Aizpurua, Rainer Hillenbrand
DOI:10.1038/s41377-025-01855-5
Abstract:Sum-frequency generation (SFG) is a second-order nonlinear process widely used for characterizing surfaces and interfaces with monolayer sensitivity. Recently, optical field enhancement in plasmonic nanocavities has enabled SFG with continuous wave (CW) lasers from nanoscale areas of molecules, promising applications like nanoscale SFG spectroscopy and coherent upconversion for mid-infrared detection at visible frequencies. Here, we demonstrate CW SFG from individual nanoparticle-on-mirror (NPoM) cavities, which are resonant at visible frequencies and filled with a monolayer of molecules, when placed beneath a metal scanning probe tip. The tip acts as an efficient broadband antenna, focusing incident CW infrared illumination onto the nanocavity. The cascaded near-field enhancement within the NPoM nanocavity yields nonlinear optical responses across a broad range of infrared frequencies, achieving SFG enhancements of up to 14 orders of magnitude. Further, nanomechanical positioning of the tip allows for in-operando control of SFG by tuning the local field enhancement rather than the illumination intensities. The versatility of tip-enhanced nanocavities allows for SFG studies of a wide range of molecular species in the few-molecule regime without the need for complex nanofabrication. Our results also promise SFG nanoimaging with tips providing strong visible and IR field enhancement at their apex, offering a robust platform for future applications in nonlinear nanooptics.