1.Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, UK
2.Max Planck Institute for the Science of Light, Staudtstr. 2, D-91058 Erlangen, Germany
3.Institute of Optics, Information and Photonics, University Erlangen-Nuremberg, Staudtstr. 7/B2, D- 91058 Erlangen, Germany
Peter Banzer (peter.banzer@mpl.mpg.de)
Francisco J. Rodríguez-Fortuño (francisco.rodriguez_fortuno@kcl.ac.uk)
Published:2019,
Published Online:05 June 2019,
Received:19 November 2018,
Revised:01 April 2019,
Accepted:16 April 2019
Scan QR Code
Picardi, M. F. et al. Experimental demonstration of linear and spinning Janus dipoles for polarisation- and wavelength-selective near-field coupling. Light: Science & Applications, 8, 464-470 (2019).
Picardi, M. F. et al. Experimental demonstration of linear and spinning Janus dipoles for polarisation- and wavelength-selective near-field coupling. Light: Science & Applications, 8, 464-470 (2019). DOI: 10.1038/s41377-019-0162-x.
The electromagnetic field scattered by nano-objects contains a broad range of wavevectors and can be efficiently coupled to waveguided modes. The dominant contribution to scattering from subwavelength dielectric and plasmonic nanoparticles is determined by electric and magnetic dipolar responses. Here
we experimentally demonstrate spectral and phase selective excitation of Janus dipoles
sources with electric and magnetic dipoles oscillating out of phase
in order to control near-field interference and directional coupling to waveguides. We show that by controlling the polarisation state of the dipolar excitations and the excitation wavelength to adjust their relative contributions
directionality and coupling strength can be fully tuned. Furthermore
we introduce a novel spinning Janus dipole featuring cylindrical symmetry in the near and far field
which results in either omnidirectional coupling or noncoupling. Controlling the propagation of guided light waves via fast and robust near-field interference between polarisation components of a source is required in many applications in nanophotonics and quantum optics.
Bohren, C. F.&Huffman, D. R. Absorption and Scattering of Light by Small Particles. (New York: Wiley, 1983).
Woźniak, P., Banzer, P.&Leuchs, G. Selective switching of individual multipole resonances in single dielectric nanoparticles.Laser Photonics Rev.9, 231-240 (2015)..
Eismann, J. S., Neugebauer, M.&Banzer, P. Exciting a chiral dipole moment in an achiral nanostructure.Optica5, 954-959 (2018)..
Liu, W., Miroshnichenko, A. E.&Kivshar, Y. S. Control of light scattering by nanoparticles with optically-induced magnetic responses.Chin. Phys. B23, 047806 (2014)..
Bliokh, K. Y., Smirnova, D.&Nori, F. Quantum spin Hall effect of light.Science348, 1448-1451 (2015)..
Rodríguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes.Science340, 328-330 (2013)..
O'Connor, D. et al. Spin-orbit coupling in surface plasmon scattering by nanostructures.Nat. Commun.5, 5327 (2014)..
Neugebauer, M. et al. Polarization tailored light driven directional optical nanobeacon.Nano Lett.14, 2546-2551 (2014)..
Kapitanova, P. V. et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes.Nature.Communications5, 3226 (2014)..
Petersen, J., Volz, J.&Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light.Science346, 67-71 (2014)..
Coles, R. J. et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer.Nat. Commun.7, 11183 (2016)..
Le Feber, B., Rotenberg, N.&Kuipers, L. Nanophotonic control of circular dipole emission.Nat. Commun.6, 6695 (2015)..
Lodahl, P. et al. Chiral quantum optics.Nature541, 473-480 (2017)..
Hayat, A., Mueller, J. P. B.&Capasso, F. Lateral chirality-sorting optical forces.Proc. Natl Acad. Sci. USA112, 13190-13194 (2015)..
Rodríguez-Fortuño, F. J. et al. Lateral forces on circularly polarizable particles near a surface.Nat. Commun.6, 8799 (2015)..
Sukhov, S. et al. Dynamic consequences of optical spin-orbit interaction.Nat. Photonics9, 809-812 (2015)..
Picardi, M. F., Zayats, A. V.&Rodríguez-Fortuño, F. J. Janus and huygens dipoles: near-field directionality beyond spin-momentum locking.Phys. Rev. Lett.120, 117402 (2018)..
Picardi, M. F. et al. Unidirectional evanescent-wave coupling from circularly polarized electric and magnetic dipoles: an angular spectrum approach.Phys. Rev. B95, 245416 (2017)..
Rolly, B., Stout, B.&Bonod, N. Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles.Opt. Express20, 20376-20386 (2012)..
Coenen, T. et al. Directional emission from a single plasmonic scatterer.Nat. Commun.5, 3250 (2014)..
Hancu, I. M. et al. Multipolar interference for directed light emission.Nano Lett.14, 166-171 (2014)..
Evlyukhin, A. B.&Bozhevolnyi, S. I. Resonant unidirectional and elastic scattering of surface plasmon polaritons by high refractive index dielectric nanoparticles.Phys. Rev. B92, 245419 (2015)..
Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks.ACS Nano7, 7824-7832 (2013)..
Alaee, R. et al. A generalized Kerker condition for highly directive nanoantennas.Opt. Lett.40, 2645-2648 (2015)..
Kuznetsov, A. I. et al. Optically resonant dielectric nanostructures.Science354, aag2472 (2016)..
Liu, S. et al. Huygens' metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators.Nano Lett.17, 4297-4303 (2017)..
Evlyukhin, A. B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region.Nano Lett.12, 3749-3755 (2012)..
Zywietz, U. et al. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses.Nat. Commun.5, 3402 (2014)..
Wei, L. et al. Directional scattering from particles under evanescent wave illumination: the role of reactive power.Opt. Lett.43, 3393-3396 (2018)..
Novotny, L. Allowed and forbidden light in near-field optics. Ⅰ. A single dipolar light source.J. Opt. Soc. Am. A14, 91-104 (1997)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution