1.The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
2.Changchun Institute of Optics, Fine Mechanics, and Physics, Chinese Academy of Sciences, 130033 Changchun, China
Chunlei Guo (guo@optics.rochester.edu)
Published:2019,
Published Online:12 June 2019,
Received:26 March 2019,
Revised:22 May 2019,
Accepted:27 May 2019
Scan QR Code
Zhang, J. H. et al. Plasmonic metasurfaces with 42.3% transmission efficiency in the visible. Light: Science & Applications, 8, 506-518 (2019).
Zhang, J. H. et al. Plasmonic metasurfaces with 42.3% transmission efficiency in the visible. Light: Science & Applications, 8, 506-518 (2019). DOI: 10.1038/s41377-019-0164-8.
Metasurfaces are two-dimensional nanoantenna arrays that can control the propagation of light at will. In particular
plasmonic metasurfaces feature ultrathin thicknesses
ease of fabrication
field confinement beyond the diffraction limit
superior nonlinear properties
and ultrafast performances. However
the technological relevance of plasmonic metasurfaces operating in the transmission mode at optical frequencies is questionable due to their limited efficiency. The state-of-the-art efficiency of geometric plasmonic metasurfaces at visible and near-infrared frequencies
for example
is ≤10%. Here
we report a multipole-interference-based transmission-type geometric plasmonic metasurface with a polarization conversion efficiency that reaches 42.3% at 744 nm
over 400% increase over the state of the art. The efficiency is augmented by breaking the scattering symmetry due to simultaneously approaching the generalized Kerker condition for two orthogonal polarizations. In addition
the design of the metasurface proposed in this study introduces an air gap between the antennas and the surrounding media that confines the field within the gap
which mitigates the crosstalk between meta-atoms and minimizes metallic absorption. The proposed metasurface is broadband
versatile
easy to fabricate
and highly tolerant to fabrication errors. We highlight the technological relevance of our plasmonic metasurface by demonstrating a transmission-type beam deflector and hologram with record efficiencies.
Meinzer, N., Barnes, W. L.&Hooper, I. R. Plasmonic meta-atoms and metasurfaces.Nat. Photonics8, 889-898 (2014)..
Won, R. The rise of plasmonic metasurfaces.Nat. Photonics11, 462-464 (2017)..
Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction.Science334, 333-337 (2011)..
Ni, X. J. et al. Broadband light bending with plasmonic nanoantennas.Science335, 427 (2012)..
Huang, L. L. et al. Dispersionless phase discontinuities for controlling light propagation.Nano Lett.12, 5750-5755 (2012)..
Sun, S. L. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces.Nano Lett.12, 6223-6229 (2012)..
Chen, X. et al. Dual-polarity plasmonic metalens for visible light.Nat. Commun.3, 1198 (2012)..
Ni, X. J. et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses.Light: Sci. Appl.2, e72 (2013)..
Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces.Nano Lett.12, 4932-4936 (2012)..
Wen, D. D. et al. Metasurface device with helicity-dependent functionality.Adv. Opt. Mater.4, 321-327 (2016)..
Yu, N. F. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces.Nano Lett.12, 6328-6333 (2012)..
Zhao, Y.&Alù, A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates.Nano Lett.13, 1086-1091 (2013)..
Karimi, E. et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface.Light: Sci. Appl.3, e167 (2014). MathSciNet.
Bouchard, F. et al. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges.Appl. Phys. Lett.105, 101905 (2014)..
Zeng, J. W. et al. Generating and separating twisted light by gradient-rotation split-ring antenna metasurfaces.Nano Lett.16, 3101-3108 (2016)..
Mehmood, M. Q. et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices.Adv. Mater.28, 2533-2539 (2016)..
Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface.Nat. Commun.4, 2808 (2013)..
Ni, X. J. et al. Metasurface holograms for visible light.Nat. Commun.4, 2807 (2013)..
Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency.Nat. Nanotechnol.10, 308-312 (2015)..
Huang, L. L. et al. Broadband hybrid holographic multiplexing with geometric metasurfaces.Adv. Mater.27, 6444-6449 (2015)..
Stockman, M. I. Nanoplasmonics: past, present, and glimpse into future.Opt. Express19, 22029-22106 (2011)..
Maier, S. A.Plasmonics: Fundamentals and Applications(Springer Verlag, Berlin, 2007).
Stockman, M. I. et al. Roadmap on plasmonics.J. Opt.20, 043001 (2018)..
Kawata, S., Inouye, Y.&Verma, P. Plasmonics for near-field nano-imaging and superlensing.Nat. Photonics3, 388-394 (2009)..
Tame, M. S. et al. Quantum plasmonics.Nat. Phys.9, 329-340 (2013)..
Kauranen, M.&Zayats, A. V. Nonlinear plasmonics.Nat. Photonics6, 737-748 (2012)..
Atwater, H. A.&Polman, A. Plasmonics for improved photovoltaic devices.Nat. Mater.9, 205-213 (2010)..
Xie, Z. H. et al. Plasmonic nanolithography: a review.Plasmonics6, 565 (2011)..
Stewart, M. E. et al. Nanostructured plasmonic sensors.Chem. Rev.108, 494-521 (2008)..
Xin, H. B., Namgung, B.&Lee, L. P. Nanoplasmonic optical antennas for life sciences and medicine.Nat. Rev. Mater.3, 228-243 (2018)..
Yu, N. F.&Capasso, F. Flat optics with designer metasurfaces.Nat. Mater.13, 139-150 (2014)..
Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible.Nat. Nanotechnol.13, 220-226 (2018)..
Wang, S. M. et al. A broadband achromatic metalens in the visible.Nat. Nanotechnol.13, 227-232 (2018)..
Devlin, R. C. et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum.Proc. Natl Acad. Sci. USA113, 10473-10478 (2016)..
Arbabi, A.&Faraon, A. Fundamental limits of ultrathin metasurfaces.Sci. Rep.7, 43722 (2017)..
Monticone, F., Estakhri, N. M.&Alù, A. Full control of nanoscale optical transmission with a composite metascreen.Phys. Rev. Lett.110, 203903 (2013)..
Kruk, S.&Kivshar, Y. Functional meta-optics and nanophotonics governed by mie resonances.ACS Photonics4, 2638-2649 (2017)..
Ding, F., Pros, A.&Bozhevolnyi, S. I. Gradient metasurfaces: a review of fundamentals and applications.Rep. Prog. Phys.81, 026401 (2018)..
Wan, W. W., Gao, J.&Yang, X. D. Metasurface holograms for holographic imaging.Adv. Opt. Mater.5, 1700541 (2017)..
Zhang, L. et al. Advances in full control of electromagnetic waves with metasurfaces.Adv. Opt. Mater.4, 818-833 (2016)..
He, Q. et al. High-efficiency metasurfaces: principles, realizations, and applications.Adv. Opt. Mater.6, 1800415 (2018)..
Epstein, A.&Eleftheriades, G. V. Huygens' metasurfaces via the equivalence principle: design and applications.J. Opt. Soc. Am. B33, A31-A50 (2016)..
Decker, M. et al. High-efficiency dielectric Huygens' surfaces.Adv. Opt. Mater.3, 813-820 (2015)..
Kerker, M., Wang, D. S.&Giles, C. L. Electromagnetic scattering by magnetic spheres.J. Opt. Soc. Am.73, 765-767 (1983)..
Pfeiffer, C.&Grbic, A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets.Phys. Rev. Lett.110, 197401 (2013)..
Pfeiffer, C.&Grbic, A. Millimeter-wave transmitarrays for wavefront and polarization control.IEEE Trans. Microw. Theory Tech.61, 4407-4417 (2013)..
Pfeiffer, C. et al. Efficient light bending with isotropic metamaterial Huygens' surfaces.Nano Lett.14, 2491-2497 (2014)..
Wong, J. P. S. et al. Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces.Photonics Nanostruct.-Fundam. Appl.12, 360-375 (2014)..
Cheng, H. et al. Emergent functionality and controllability in few-layer metasurfaces.Adv. Mater.27, 5410-5421 (2015)..
Chen, S. Q. et al. Empowered layer effects and prominent properties in few-layer metasurfaces.Adv. Opt. Mater.7, 1801477 (2019)..
Grady, N. K. et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction.Science340, 1304-1307 (2013)..
Zhu, W. M. et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial.Adv. Mater.27, 4739-4743 (2015)..
El Kabbash, M. et al. Plasmon-exciton resonant energy transfer: across scales hybrid systems.J. Nanomater.2016, 4819040 (2016)..
Liu, W.&Kivshar, Y. S. Generalized Kerker effects in nanophotonics and meta-optics [Invited].Opt. Express26, 13085-13105 (2018)..
Wen, D. D. et al. Metasurface for characterization of the polarization state of light.Opt. Express23, 10272-10281 (2015)..
Alu, A.&Engheta, N. How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?J. Nanophotonics4, 041590 (2010)..
Pors, A. et al. Unidirectional scattering by nanoparticles near substrates: generalized Kerker conditions.Opt. Express23, 28808-28828 (2015)..
Alaee, R., Rockstuhl, C.&Fernandez-Corbaton, I. An electromagnetic multipole expansion beyond the long-wavelength approximation.Opt. Commun.407, 17-21 (2018)..
Oulton, R. F. et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation.Nat. Photonics2, 496-500 (2008)..
Qin, F. et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light.Sci. Adv.2, e1501168 (2016)..
Cui, Z.Nanofabrication: Principles, Capabilities and Limits2nd edn (Springer, Cham, 2017).
Burch, J.&Di Falco, A. Surface topology specific metasurface holograms.ACS Photonics5, 1762-1766 (2018)..
Aieta, F. et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities.Nano Lett.12, 1702-1706 (2012)..
Gerchberg, R. W.&Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures.Optik35, 237-246 (1972)..
Lapedes, D. N.Dictionary of Scientific and Technical Terms. 2nd edn (McGraw Hill, New York, 1978).
Kruk, S. et al. Invited article: broadband highly efficient dielectric metadevices for polarization control.APL Photonics1, 030801 (2016)..
Zhu, A. Y. et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures.Light: Sci. Appl.7, 17158 (2018)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution