1.The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
2.Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
Xi-Cheng Zhang (xi-cheng.zhang@rochester.edu)
Robert W. Boyd (boydrw@mac.com)
Published:2019,
Published Online:12 June 2019,
Received:03 February 2019,
Revised:15 May 2019,
Accepted:29 May 2019
Scan QR Code
Zhao, J. P. et al. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding. Light: Science & Applications, 8, 519-526 (2019).
Zhao, J. P. et al. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding. Light: Science & Applications, 8, 519-526 (2019). DOI: 10.1038/s41377-019-0166-6.
Recently
computational sampling methods have been implemented to spatially characterize terahertz (THz) fields. Previous methods usually rely on either specialized THz devices such as THz spatial light modulators or complicated systems requiring assistance from photon-excited free carriers with high-speed synchronization among multiple optical beams. Here
by spatially encoding an 800-nm near-infrared (NIR) probe beam through the use of an optical SLM
we demonstrate a simple sampling approach that can probe THz fields with a single-pixel camera. This design does not require any dedicated THz devices
semiconductors or nanofilms to modulate THz fields. Using computational algorithms
we successfully measure 128 × 128 field distributions with a 62-μm transverse spatial resolution
which is 15 times smaller than the central wavelength of the THz signal (940 μm). Benefitting from the non-invasive nature of THz radiation and sub-wavelength resolution of our system
this simple approach can be used in applications such as biomedical sensing
inspection of flaws in industrial products
and so on.
Pickwell, E.&Wallace, V. P. Biomedical applications of terahertz technology.J. Phys. D: Appl. Phys.39, R301-R310 (2006)..
Karpowicz, N. et al. Compact continuous-wave subterahertz system for inspection applications.Appl. Phys. Lett.86, 054105 (2005)..
Zhang, X. C.&Xu, J. Z.Introduction to THz Wave Photonics(Springer, Boston, MA, 2010).
Lee, Y. S.Principles of Terahertz Science and Technology(Springer, Boston, MA, 2009).
Wang, K. L.&Mittleman, D. M. Metal wires for terahertz wave guiding.Nature432, 376-379 (2004)..
Kawase, K. et al. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints.Opt. Express11, 2549-2554 (2003)..
Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution.Nat. Photon.8, 841-845 (2014)..
Escorcia, I. et al. Uncooled CMOS terahertz imager using a metamaterial absorber and PN diode.Opt. Lett.41, 3261-3264 (2016)..
Grossman, E. et al. Passive terahertz camera for standoff security screening.Appl. Opt.49, E106-E120 (2010)..
Seo, M. A. et al. Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and poynting vectors.Opt. Express15, 11781-11789 (2007)..
Chan, W. L. et al. A spatial light modulator for terahertz beams.Appl. Phys. Lett.94, 213511 (2009)..
Watts, C. M. et al. Terahertz compressive imaging with metamaterial spatial light modulators.Nat. Photon.8, 605-609 (2014)..
Ulbricht, R.et al. Carrier dynamics in semi-conductors studied with time-resolved terahertz spectroscopy.Rev. Mod. Phys.83, 543-586 (2011)..
Shrekenhamer, D., Watts, C. M.&Padilla, W. J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator.Opt. Express21, 12507-12518 (2013)..
Stantchev, R. I. et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector.Sci. Adv.2, e1600190 (2016)..
Stantchev, R. I. et al. Compressed sensing with near-field THz radiation.Optica4, 989-992 (2017)..
Chen, S. C. et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100.Opt. Lett.44, 21-24 (2019)..
Altmann, Y. et al. Quantum-inspired computational imaging.Science361, eaat2298 (2018)..
Wu, Q.&Zhang, X. C. Free-space electro-optic sampling of terahertz beams.Appl. Phys. Lett.67, 3523-3525 (1995)..
Edgar, M. P. et al. Simultaneous real-time visible and infrared video with single-pixel detectors.Sci. Rep.5, 10669 (2015)..
Harwit, M.Hadamard Transform Optics(Elsevier, Amsterdam, 2012).
Xie, X., Xu, J. Z.&Zhang, X. C. Terahertz wave generation and detection from a CdTe crystal characterized by different excitation wavelengths.Opt. Lett.31, 978-980 (2006)..
Kowarz, M. W. Homogeneous and evanescent contributions in scalar near-field diffraction.Appl. Opt.34, 3055-3063 (1995)..
Mitrofanov, O. Terahertz near-field electro-optic probe based on a microresonator.Appl. Phys. Lett.88, 091118 (2006)..
Blanchard, F. et al. Real-time, subwavelength terahertz imaging.Annu. Rev. Mater. Res.43, 237-259 (2013)..
Li, C. BCompressive Sensing for 3D Data Processing Tasks: Applications, Models and Algorithms. Ph.D. thesis (Rice University: Houston, Texas, 2011).
Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation.Nat. Photon.10, 483-488 (2016)..
Sun, M. J. et al. A Russian dolls ordering of the Hadamard basis for compressive single-pixel imaging.Sci. Rep.7, 3464 (2017)..
Sun, B. et al. 3D computational imaging with single-pixel detectors.Science340, 844-847 (2013)..
Chan, W. L. et al. A single-pixel terahertz imaging system based on compressed sensing.Appl. Phys. Lett.93, 121105 (2008)..
Stantchev, R. I. et al. Subwavelength hyperspectral THz studies of articular cartilage.Sci. Rep.8, 6924 (2018)..
Jiang, Z. P.&Zhang, X. C. 2D measurement and spatio-temporal coupling of few-cycle THz pulses.Opt. Express5, 243-248 (1999)..
Mittleman, D. M. Twenty years of terahertz imaging [Invited].Opt. Express26, 9417-9431 (2018)..
Zhao, J. Y. et al. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air.Sci. Rep.4, 3880 (2014)..
Olivieri, L. et al. Time-resolved nonlinear ghost imaging.ACS Photon.5, 3379-3388 (2018)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution