1.The State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
2.National Mobile Communications Research Lab, Southeast University, Nanjing 210096, China
Tie Jun Cui (tjcui@seu.edu.cn)
Published:2019,
Published Online:03 July 2019,
Received:07 December 2018,
Revised:05 June 2019,
Accepted:06 June 2019
Scan QR Code
Wan, X. et al. Multichannel direct transmissions of nearfield information. Light: Science & Applications, 8, 538-545 (2019).
Wan, X. et al. Multichannel direct transmissions of nearfield information. Light: Science & Applications, 8, 538-545 (2019). DOI: 10.1038/s41377-019-0169-3.
A digital-coding programmable metasurface (DCPM) is a type of functional system that is composed of subwavelength-scale digital coding elements with opposite phase responses. By configuring the digital coding elements
a DCPM can construct dynamic near-field image patterns in which the intensity of each pixel of the image can be dynamically and independently modulated. Thus
a DCPM can perform both spatial and temporal modulations. Here
this advantage is used to realize multichannel direct transmissions of near-field information. Three points are selected in the near-field region to form three independent channels. By applying various digital phase codes on the DCPM
independent binary digital symbols defined by amplitude codes (namely
weak and strong amplitudes) are transmitted through the three channels. The measured near-field distributions and temporal transmissions of the system agree with numerical calculations. Compared with the conventional multichannel transmission
the proposed mechanism achieves simultaneous spatial and temporal modulations by treating DCPM as an energy radiator and information modulator
thereby enduing DCPM with high potential in near-field information processing and communications.
Pendry, J. B., Schurig, D.&Smith, D. R. Controlling electromagnetic fields.Science312, 1780-1782 (2006)..
Pendry, J. B. et al. Transformation optics and subwavelength control of light.Science337, 549-552 (2012)..
Smith, D. R., Pendry, J. B.&Wiltshire, M. C. K. Metamaterials and negative refractive index.Science305, 788-792 (2004)..
Shelby, R. A., Smith, D. R.&Schultz, S. Experimental verification of a negative index of refraction.Science292, 77-79 (2001)..
Pendry, J. B. Negative refraction makes a perfect lens.Phys. Rev. Lett.85, 3966-3969 (2000)..
Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies.Science314, 977-980 (2006)..
Li, J. S.&Pendry, J. B. Hiding under the carpet: a new strategy for cloaking.Phys. Rev. Lett.101, 203901 (2008)..
Ergin, T. et al. Three-dimensional invisibility cloak at optical wavelengths.Science328, 337-339 (2010)..
Xu, L., Xiong, Z.&Chen, H. Y. Analysis of a conformal invisible device.Front. Phys.13, 134203 (2018)..
Chu, H. C. et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials.Light. Sci. Appl.7, 50 (2018)..
Ginzburg, P. et al. Spontaneous emission in non-local materials.Light. Sci. Appl.6, e16273 (2017)..
Kirill, K., Bogdanov, A.&Kivshar, Y. Meta-optics and bound states in the continuum.Science Bulletin. https://doi.org/10.1016/j.scib.2018.12.003 (2018).
Cao, W. K. et al. Asymmetric transmission of acoustic waves in a waveguide via gradient index metamaterials.Science Bulletin. https://doi.org/10.1016/j.scib.2019.01.002 (2019).
Zeng, B. B. et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging.Light. Sci. Appl.7, 51 (2018)..
Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction.Science334, 333-337 (2011)..
Liu, R. P. et al. Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory.Phys. Rev. E76, 026606 (2007)..
Huang, L. L. et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity.Light. Sci. Appl.2, e70 (2013)..
Wan, X. et al. A broadband transformation-optics metasurface lens.Appl. Phys. Lett.104, 151601 (2014)..
Wan, X. et al. Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface.Laser Photonics Rev.8, 757-765 (2014)..
Yu, Y. F. et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths.Laser Photonics Rev.9, 412-418 (2015)..
Wan, X. et al. Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces.Sci. Rep.6, 25639 (2016)..
Minatti, G. et al. Synthesis of modulated-metasurface antennas with amplitude, phase, and polarization control.IEEE Trans. Antennas Propag.64, 3907-3919 (2016)..
Kim, T. T. et al. Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces.Adv. Opt. Mater.6, 1700507 (2018)..
Song, X. et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces.Adv. Opt. Mater.6, 1701181 (2018)..
Wan, X. et al. Horn antenna with reconfigurable beam-refraction and polarization based on anisotropic huygens metasurface.IEEE Trans. Antennas Propag.65, 4427-4434 (2017)..
Mueller, J. P. B. et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization.Phys. Rev. Lett.118, 113901 (2017)..
Aydin, K. et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers.Nat. Commun.2, 517 (2011)..
Grady, N. K. et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction.Science340, 1304-1307 (2013)..
Jiang, S. C. et al. Controlling the polarization state of light with a dispersion-free metastructure.Phys. Rev.4, 021026 (2014)..
Wei, Q. S. et al. Broadband multiplane holography based on plasmonic metasurface.Adv. Opt. Mater.5, 1700434 (2017)..
Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface.Nat. Commun.4, 2808 (2013)..
Ye, W. M. et al. Spin and wavelength multiplexed nonlinear metasurface holography.Nat. Commun.7, 11930 (2016)..
Yue, F. Y. et al. Vector vortex beam generation with a single plasmonic metasurface.ACS Photonics3, 1558-1563 (2016)..
Zhang, Y. C. et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces.Adv. Opt. Mater.6, 1701228 (2018)..
Liu, Z. X. et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere.Photonics Res.5, 15-21 (2017)..
Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves.Nat. Mater.11, 426-431 (2012)..
Liu, S. et al. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves.Light. Sci. Appl.7, 18008 (2018)..
Cong, L. Q. et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting.Light. Sci. Appl.7, 28 (2018)..
Papaioannou, M. et al. All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface.Light. Sci. Appl.7, 17157 (2018)..
Yin, X. H. et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces.Light. Sci. Appl.6, e17016 (2017)..
Zhang, J. J. et al. Integrated spoof plasmonic circuits.Science Bulletin. https://doi.org/10.1016/j.scib.2019.01.022(2019).
Cui, T. J. et al. Coding metamaterials, digital metamaterials and programmable metamaterials.Light. Sci. Appl.3, e218 (2014)..
Liu, S. et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves.Light. Sci. Appl.5, e16076 (2016)..
Liu, S. et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams.Adv. Sci.3, 1600156 (2016)..
Cui, T. J. Microwave metamaterials.Natl. Sci. Rev.5, 134-136 (2018)..
Cui, T. J., Liu, S.&Li, L. L. Information entropy of coding metasurface.Light. Sci. Appl.5, e16172 (2016)..
Cui, T. J., Liu, S.&Zhang, L. Information metamaterials and metasurfaces.J. Mater. Chem. C.5, 3644-3668 (2017)..
Wan, X. et al. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface.Sci. Rep.6, 20663 (2016)..
Li, L. L. et al. Electromagnetic reprogrammable coding-metasurface holograms.Nat. Commun.8, 197 (2017)..
Cui, T. J. Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves.J. Opt.19, 084004 (2017)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution