1.Physikalisches Institut, Universit?t Bonn, 53115 Bonn, Germany
2.Physics Department and Research Center OPTIMAS, TU Kaiserslautern, 67663 Kaiserslautern, Germany
3.Graduate School Materials Science in Mainz, 67663 Kaiserslautern, Germany
4.Fraunhofer Institute for Industrial Mathematics ITWM, 67663 Kaiserslautern, Germany
Z Fedorova Cherpakova (cherpakova@physik.uni-bonn.de)
C Jörg (cjoerg@physik.uni-kl.de)
Published:2019,
Published Online:10 July 2019,
Received:13 December 2018,
Revised:05 June 2019,
Accepted:14 June 2019
Scan QR Code
Fedorova (Cherpakova), Z. et al. Limits of topological protection under local periodic driving. Light: Science & Applications, 8, 546-557 (2019).
Fedorova (Cherpakova), Z. et al. Limits of topological protection under local periodic driving. Light: Science & Applications, 8, 546-557 (2019). DOI: 10.1038/s41377-019-0172-8.
The bulk-edge correspondence guarantees that the interface between two topologically distinct insulators supports at least one topological edge state that is robust against static perturbations. Here
we address the question of how dynamic perturbations of the interface affect the robustness of edge states. We illuminate the limits of topological protection for Floquet systems in the special case of a static bulk. We use two independent dynamic quantum simulators based on coupled plasmonic and dielectric photonic waveguides to implement the topological Su-Schriefer-Heeger model with convenient control of the full space- and time-dependence of the Hamiltonian. Local time-periodic driving of the interface does not change the topological character of the system but nonetheless leads to dramatic changes of the edge state
which becomes rapidly depopulated in a certain frequency window. A theoretical Floquet analysis shows that the coupling of Floquet replicas to the bulk bands is responsible for this effect. Additionally
we determine the depopulation rate of the edge state and compare it to numerical simulations.
Kitaev, A. Periodic table for topological insulators and superconductors.AIP Conf. Proc.1134, 22-30 (2009)..
Hasan, M. Z.&Kane, C. L.Colloquium: topological insulators.Rev. Mod. Phys.82, 3045-3067 (2010)..
Zhang, T. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry.Phys. Rev. Lett.103, 266803 (2009)..
Dziawa, P. et al. Topological crystalline insulator states in Pb1-xSnxSe.Nat. Mater.11, 1023-1027 (2012)..
Lu, L., Joannopoulos, J. D.&Soljačić, M. Topological photonics.Nat. Photonics8, 821-829 (2014)..
Leder, M. et al. Real-space imaging of a topologically protected edge state with ultracold atoms in an amplitude-chirped optical lattice.Nat. Commun.7, 13112 (2016)..
Lignier, H. et al. Dynamical control of matter-wave tunneling in periodic potentials.Phys. Rev. Lett.99, 220403 (2007)..
Longhi, S. et al. Observation of dynamic localization in periodically curved waveguide arrays.Phys. Rev. Lett.96, 243901 (2006)..
Li, H. N., Kottos, T.&Shapiro, B. Driving-induced metamorphosis of transport in arrays of coupled resonators.Phys. Rev. A97, 023846 (2018)..
Cardano, F. et al. Statistical moments of quantum-walk dynamics reveal topological quantum transitions.Nat. Commun.7, 11439 (2016)..
Thuberg, D., Reyes, S. A.&Eggert, S. Quantum resonance catastrophe for conductance through a periodically driven barrier.Phys. Rev. B93, 180301 (2016)..
Thuberg, D. et al. Perfect spin filter by periodic drive of a ferromagnetic quantum barrier.Phys. Rev. Lett.119, 267701 (2017)..
Reyes, S. A. et al. Transport through an AC-driven impurity: Fano interference and bound states in the continuum.New J. Phys.19, 043029 (2017)..
Agarwala, A.&Sen, D. Effects of local periodic driving on transport and generation of bound states.Phys. Rev. B96, 104309 (2017)..
Moskalets, M.&Büttiker, M. Floquet scattering theory of quantum pumps.Phys. Rev. B66, 205320 (2002)..
Oka, T.&Aoki, H. Photovoltaic Hall effect in graphene.Phys. Rev. B79, 081406 (2009)..
Kitagawa, T. et al. Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels.Phys. Rev. B84, 235108 (2011)..
Lindner, N. H., Refael, G.&Galitski, V. Floquet topological insulator in semiconductor quantum wells.Nat. Phys.7, 490-495 (2011)..
Kitagawa, T. et al. Topological characterization of periodically driven quantum systems.Phys. Rev. B82, 235114 (2010)..
Rudner, M. S. et al. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems.Phys. Rev.3, 031005 (2013)..
Balabanov, O.&Johannesson, H. Robustness of symmetry-protected topological states against time-periodic perturbations.Phys. Rev. B96, 035149 (2017)..
Longhi, S. Quantum-optical analogies using photonic structures.Laser Photonics Rev.3, 243-261 (2009)..
Bleckmann, F. et al. Spectral imaging of topological edge states in plasmonic waveguide arrays.Phys. Rev. B96, 045417 (2017)..
Block, A. et al. Bloch oscillations in plasmonic waveguide arrays.Nat. Commun.5, 3843 (2014)..
Cherpakova, Z. et al. Transverse Anderson localization of surface plasmon polaritons.Opt. Lett.42, 2165-2168 (2017)..
Jörg, C. et al. Dynamic defects in photonic Floquet topological insulators.New J. Phys.19, 083003 (2017)..
Su, W. P., Schrieffer, J. R.&Heeger, A. J. Solitons in polyacetylene.Phys. Rev. Lett.42, 1698-1701 (1979)..
Asbóth, J. K., Oroszlány, L.&Pályi, A. A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions. (Cham: Springer, 2016).
Rechtsman, M. C. et al. Photonic Floquet topological insulators.Nature496, 196-200 (2013)..
Dal Lago, V., Atala, M.&Foa Torres, L. E. F. Floquet topological transitions in a driven one-dimensional topological insulator.Phys. Rev. A92, 023624 (2015)..
Fruchart, M. Complex classes of periodically driven topological lattice systems.Phys. Rev. B93, 115429 (2016)..
Shirley, J. H. Solution of the Schrödinger equation with a Hamiltonian periodic in time.Phys. Rev.138, B979-B987 (1965)..
Gómez-León, A.&Platero, G. Floquet-Bloch theory and topology in periodically driven lattices.Phys. Rev. Lett.110, 200403 (2013)..
Usaj, G. et al. Irradiated graphene as a tunable Floquet topological insulator.Phys. Rev. B90, 115423 (2014)..
Sakurai, J. J.&Napolitan, J. J.Modern Quantum Mechanics, 2nd edn. (Pearson, Harlow, 2011).
Holthaus, M. Floquet engineering with quasienergy bands of periodically driven optical lattices.J. Phys. B:. Mol. Opt. Phys.49, 013001 (2016)..
Eckardt, A.Colloquium: atomic quantum gases in periodically driven optical lattices.Rev. Mod. Phys.89, 011004 (2017)..
Drezet, A. et al. Leakage radiation microscopy of surface plasmon polaritons.Mater. Sci. Eng.: B149, 220-229 (2008)..
Thyagarajan, K., Shenoy, M. R.&Ghatak, A. K. Accurate numerical method for the calculation of bending loss in optical waveguides using a matrix approach.Opt. Lett.12, 296-298 (1987)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution