Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education, School of Optics and Photonics, Beijing Institute of Technology, 100081 Beijing, China
Huang, L. L. Breaking the spatial reciprocity with Janus metamaterials. Light: Science & Applications, 8, 457-458 (2019).
DOI:
Huang, L. L. Breaking the spatial reciprocity with Janus metamaterials. Light: Science & Applications, 8, 457-458 (2019). DOI: 10.1038/s41377-019-0175-5.
Breaking the spatial reciprocity with Janus metamaterials
Switching of the observation direction as well as the polarization channels of chiral Janus metamaterials may result in different reconstructed images.
关键词
Keywords
references
Hentschel, M. et al. Chiral plasmonics.Sci. Adv.3, e1602735 (2017)..
Zheludev, N. I.&Kivshar, Y. S. From metamaterials to metadevices.Nat. Mater.11, 917-924 (2012)..
Yu, N. F.&Capasso, F. Flat optics with designer metasurfaces.Nat. Mater.13, 139-150 (2014)..
Genevet, P.&Capasso, F. Holographic optical metasurfaces: a review of current progress.Rep. Prog. Phys.78, 024401 (2015)..
Genevet, P. et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces.Optica.4, 139-152 (2017)..
Kamali, S. M. et al. A review of dielectric optical metasurfaces for wavefront control.Nanophotonics.7, 1041-1068 (2018)..
Chen, Y., Yang, X. D.&Gao, J. 3D janus plasmonic helical nanoapertures for polarization-encrypted data storage.Light.: Sci. Appl.8, 45 (2019)..
Frese, D. et al. Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces.Nano Lett.https://doi.org/10.1021/acs.nanolett.9b01298https://doi.org/10.1021/acs.nanolett.9b01298(2019)..