1.Institute for Photonic Integration, Eindhoven University of Technology, PO Box 5135600 MB Eindhoven, the Netherlands
2.Faculty of Science and Technology, University of Twente, P.O. Box 2177500 AE Enschede, the Netherlands
3.State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University, Beijing 100871, China
Zizheng Cao (z.cao@tue.nl)
Ivo M. Vellekoop (i.m.vellekoop@utwente.nl)
Antonius M. J. Koonen (A.M.J.Koonen@tue.nl)
Published:2019,
Published Online:24 July 2019,
Received:22 November 2018,
Revised:20 May 2019,
Accepted:02 July 2019
Scan QR Code
Cao, Z. Z. et al. Reconfigurable beam system for non-line-of-sight free-space optical communication. Light: Science & Applications, 8, 591-599 (2019).
Cao, Z. Z. et al. Reconfigurable beam system for non-line-of-sight free-space optical communication. Light: Science & Applications, 8, 591-599 (2019). DOI: 10.1038/s41377-019-0177-3.
In this paper
we propose a reconfigurable beam-shaping system to permit energy-efficient non-line-of-sight (NLOS) free-space optical communication. Light is steered around obstacles blocking the direct communication pathway and reaches a receiver after reflecting off of a diffuse surface. A coherent array optical transmitter (CAO-Tx) is used to spatially shape the wavefront of the light incident on a diffuse surface. Wavefront shaping is used to enhance the amount of diffusely reflected light reaching the optical receiver. Synthetic NLOS experiments for a signal reflected over an angular range of 20° are presented. A record-breaking 30-Gbit/s orthogonal frequency-division multiplexing signal is transmitted over a diffused optical wireless link with a > 17-dB gain.
NCAT. Growth In The Internet of Things. atwww.ncta.com/chart/growth-in-the-internet-of-things#.WsSRvubTQ00.linkhttp://www.ncta.com/chart/growth-in-the-internet-of-things#.WsSRvubTQ00.link.
Koonen, T. Indoor optical wireless systems: technology, trends, and applications.J. Light. Technol.36, 1459-1467 (2018)..
Wang, C. X. et al. Cellular architecture and key technologies for 5G wireless communication networks.IEEE Commun. Mag.52, 122-130 (2014)..
CISCO. 802.11ac: The Fifth Generation of Wi-Fi. (CISCO, 2018).
IEEE. Draft Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (IEEE, 2016).
Chan, V. W. S. Free-space optical communications.J. Light. Technol.24, 4750-4762 (2006)..
Gomez, A. et al. Design and demonstration of a 400 Gb/s indoor optical wireless communications link.J. Light. Technol.34, 5332-5339 (2016)..
Haas, H. L. et al. What is LiFi?J. Light. Technol.34, 1533-1544 (2016)..
Schulz, D. et al. Robust optical wireless link for the backhaul and fronthaul of small radio cells.J. Light. Technol.34, 1523-1532 (2016)..
O'Brien, D., Parry, G.&Stavrinou, P. Optical hotspots speed up wireless communication.Nat. Photonics1, 245-247 (2007)..
Chi, Y. C. et al. Phosphorous diffuser diverged blue laser diode for indoor lighting and communication.Sci. Rep.5, 18690 (2015)..
Chi, Y. C. et al. 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM.Opt. Express23, 13051-13059 (2015)..
Wu, T. C. et al. Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s.Sci. Rep.7, 11 (2017)..
Chun, H. et al. LED based wavelength division multiplexed 10 Gb/s visible light communications.J. Light. Technol.34, 3047-3052 (2016)..
Kahn, J. M.&Barry, J. R. Wireless infrared communications.Proc. IEEE85, 265-298 (1997)..
Koonen, T. et al. High-capacity optical wireless communication using two-dimensional IR beam steering.J. Light. Technol.36, 4486-4493 (2018)..
Wang, K. et al. Experimental demonstration of a full-duplex indoor optical wireless communication system.IEEE Photonics Technol. Lett.24, 188-190 (2012)..
Elgala, H., Mesleh, R.&Haas, H. Indoor optical wireless communication: potential and state-of-the-art.IEEE Commun. Mag.49, 56-62 (2011)..
Mosk, A. P. et al. Controlling waves in space and time for imaging and focusing in complex media.Nat. Photonics6, 283-292 (2012)..
Vellekoop, I. M.&Mosk, A. P. Focusing coherent light through opaque strongly scattering media.Opt. Lett.32, 2309-2311 (2007)..
Horstmeyer, R., Ruan, H. W.&Yang, C. H. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue.Nat. Photonics9, 563-571 (2015)..
Tang, J. Y., Germain, R. N.&Cui, M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique.Proc. Natl Acad. Sci. USA109, 8434-8439 (2012)..
Dholakia, K.&Čižmár, T. Shaping the future of manipulation.Nat. Photonics5, 335-342 (2011)..
Goorden, S. A. et al. Quantum-secure authentication of a physical unclonable key.Optica1, 421-424 (2014)..
Vellekoop, I. M. Feedback-based wavefront shaping.Opt. Express23, 12189-12206 (2015)..
Yılmaz, H., Vos, W. L.&Mosk, A. P. Optimal control of light propagation through multiple-scattering media in the presence of noise.Biomed. Opt. Express4, 1759-1768 (2013)..
Shieh, W.&Djordjevic, I.OFDM for Optical Communications.(Academic Press, New York, 2009).
Kalita, S. et al. Performance enhancement of a multichannel uncoordinated code hopping DSSS signaling scheme using multipath fading compensator.J. Circuits, Syst. Comput.25, 1650145 (2016)..
Biglieri, E., Proakis, J.&Shamai, S. Fading channels: information-theoretic and communications aspects.IEEE Trans. Inf. Theory44, 2619-2692 (1998)..
Sahu, P. P.&Singh, M. Multi channel frequency hopping spread spectrum signaling using code M-ary frequency shift keying.Comput. Electr. Eng.34, 338-345 (2008)..
Yu, H. S., Lee, K.&Park, Y. Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes.Opt. Express25, 8036-8047 (2017)..
Blochet, B., Bourdieu, L.&Gigan, S. Focusing light through dynamical samples using fast continuous wavefront optimization.Opt. Lett.42, 4994-4997 (2017)..
Johnson, P. M. et al. Time-resolved pulse propagation in a strongly scattering material.Phys. Rev. E68, 016604 (2003)..
Smit, M., van der Tol, J.&Hill, M. Moore's law in photonics.Laser Photonics Rev.6, 1-13 (2012)..
Shieh, W., Bao, H.&Tang, Y. Coherent optical OFDM: theory and design.Opt. Express16, 841-859 (2008)..
Ip, E. et al. Coherent detection in optical fiber systems.Opt. Express16, 753-791 (2008)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution