1.State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
2.School of Physics, Sun Yat-sen University, Guangzhou 510275, China
3.School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
Qiong-Hua Wang (qionghua@buaa.edu.cn)
Jian-Wen Dong (dongjwen@mail.sysu.edu.cn)
Published:2019,
Published Online:24 July 2019,
Received:27 January 2019,
Revised:03 July 2019,
Accepted:06 July 2019
Scan QR Code
Fan, Z. B. et al. A broadband achromatic metalens array for integral imaging in the visible. Light: Science & Applications, 8, 600-609 (2019).
Fan, Z. B. et al. A broadband achromatic metalens array for integral imaging in the visible. Light: Science & Applications, 8, 600-609 (2019). DOI: 10.1038/s41377-019-0178-2.
Integral imaging is a promising three-dimensional (3D) imaging technique that captures and reconstructs light field information. Microlens arrays are usually used for the reconstruction process to display 3D scenes to the viewer. However
the inherent chromatic aberration of the microlens array reduces the viewing quality
and thus
broadband achromatic imaging remains a challenge for integral imaging. Here
we realize a silicon nitride metalens array in the visible region that can be used to reconstruct 3D optical scenes in the achromatic integral imaging for white light. The metalens array contains 60 × 60 polarization-insensitive metalenses with nearly diffraction-limited focusing. The nanoposts in each high-efficiency (measured as 47% on average) metalens are delicately designed with zero effective material dispersion and an effective achromatic refractive index distribution from 430 to 780 nm. In addition
such an achromatic metalens array is composed of only a single silicon nitride layer with an ultrathin thickness of 400 nm
making the array suitable for on-chip hybrid-CMOS integration and the parallel manipulation of optoelectronic information. We expect these findings to provide possibilities for full-color and aberration-free integral imaging
and we envision that the proposed approach may be potentially applicable in the fields of high-power microlithography
high-precision wavefront sensors
virtual/augmented reality and 3D imaging.
Lippmann, G. La photographie intégrale.Comtes Rendus,Academie des Sciences. 446-451 (1908)..
Sokolov, A. P. Autostereoscopy and Integral Photography by Professor Lippmann's Method. (IZD MGU: Moscow State University Press, 1911).
Okano, F. et al. Real-time pickup method for a three-dimensional image based on integral photography.Appl. Opt.36, 1598-1603 (1997)..
Ren, H. et al. Super-multiview integral imaging scheme based on sparse camera array and CNN super-resolution.Appl. Opt.58, A190-A196 (2019)..
Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces.Nano Lett.12, 4932-4936 (2012)..
Xu, H. X. et al. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces.Appl. Phys. Lett.109, 193506 (2016)..
Chen, K. et al. A Reconfigurable active huygens' metalens.Adv. Mater.29, 1606422 (2017)..
West, P. R. et al. All-dielectric subwavelength metasurface focusing lens.Opt. Express22, 26212-26221 (2014)..
Arbabi, A. et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays.Nat. Commun.6, 7069 (2015)..
Li, R. Z. et al. Broadband, high-efficiency, arbitrary focusing lens by a holographic dielectric meta-reflectarray.J. Phys. D: Appl. Phys.49, 145101 (2016)..
Verslegers, L. et al. Planar lenses based on nanoscale slit arrays in a metallic film.Nano Lett.9, 235-238 (2009)..
Chen, X. Z. et al. Longitudinal multifoci metalens for circularly polarized light.Adv. Opt. Mater.3, 1201-1206 (2015)..
Ni, X. J. et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses.Light.: Sci. Appl.2, e72 (2013)..
Chen, X. Z. et al. Dual-polarity plasmonic metalens for visible light.Nat. Commun.3, 1198 (2012)..
Chen, X. Z. et al. Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens.Adv. Opt. Mater.1, 517-521 (2013)..
Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging.Science352, 1190-1194 (2016)..
Khorasaninejad, M. et al. Polarization-insensitive metalenses at visible wavelengths.Nano Lett.16, 7229-7234 (2016)..
Chen, W. T. et al. Immersion meta-lenses at visiblewavelengths for nanoscale imaging.Nano Lett.17, 3188-3194 (2017)..
Groever, B., Chen, W. T.&Capasso, F. Meta-lens doublet in the visible region.Nano Lett.17, 4902-4907 (2017)..
Zhan, A. L. et al. Metasurface freeform nanophotonics.Sci. Rep.7, 1673 (2017)..
Zhou, J. X. et al. Broadband photonic spin hall meta-lens.ACS Nano12, 82-88 (2018)..
Fan, Z. B. et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging.Phys. Rev. Appl.10, 014005 (2018)..
Colburn, S., Zhan, A. L.&Majumdar, A. Metasurface optics for full-color computational imaging.Sci. Adv.4, eaar2114 (2018)..
Khorasaninejad, M. et al. Achromatic metasurface lens at telecommunication wavelengths.Nano Lett.15, 5358-5362 (2015)..
Aieta, F. et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation.Science347, 1342-1345 (2015)..
Arbabi, E. et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules.Optica3, 628-633 (2016)..
Arbabi, E. et al. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms.Opt. Express24, 18468-18477 (2016)..
Eisenbach, O. et al. Metasurfaces based dual wavelength diffractive lenses.Opt. Express23, 3928-3936 (2015)..
Zhao, Z. Y. et al. Multispectral optical metasurfaces enabled by achromatic phase transition.Sci. Rep.5, 15781 (2015)..
Arbabi, E. et al. Multiwavelength metasurfaces through spatial multiplexing.Sci. Rep.6, 32803 (2016)..
Khorasaninejad, M. et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion.Nano Lett.17, 1819-1824 (2017)..
Arbabi, E. et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces.Optica4, 625-632 (2017)..
Wang, S. M. et al. Broadband achromatic optical metasurface devices.Nat. Commun.8, 187 (2017)..
Wang, S. M. et al. A broadband achromatic metalens in the visible.Nat. Nanotechnol.13, 227-232 (2018)..
Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible.Nat. Nanotechnol.13, 220-226 (2018)..
Shrestha, S. et al. Broadband achromatic dielectric metalenses.Light.: Sci. Appl.7, 85 (2018)..
Chen, W. T. et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures.Nat. Commun.10, 355 (2019)..
Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging.Nat. Nanotechnol.14, 227-231 (2019)..
Wang, Q. H. et al. Dual-view integral imaging 3D display by using orthogonal polarizer array and polarization switcher.Opt. Express24, 9-16 (2016)..
Wang, X. R.&Hua, H. Theoretical analysis for integral imaging performance based on microscanning of a microlens array.Opt. Lett.33, 449-451 (2008)..
Liu, V.&Fan, S. H. S4: a free electromagnetic solver for layered periodic structures.Comput. Phys. Commun.183, 2233-2244 (2012)..
Li, S. L. et al. Multiple orthographic frustum combing for real-time computer-generated integral imaging system.J. Disp. Technol.10, 704-709 (2014)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution