Center for Quantum Devices, Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
Manijeh Razeghi (razeghi@northwestern.edu)
Published:2021,
Published Online:14 January 2021,
Received:08 August 2020,
Revised:26 November 2020,
Accepted:08 December 2020
Scan QR Code
Dehzangi, A., Li, J. K. & Razeghi, M. Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice. Light: Science & Applications, 10, 140-146 (2021).
Dehzangi, A., Li, J. K. & Razeghi, M. Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice. Light: Science & Applications, 10, 140-146 (2021). DOI: 10.1038/s41377-020-00453-x.
The LWIR and longer wavelength regions are of particular interest for new developments and new approaches to realizing long-wavelength infrared (LWIR) pho
todetectors with high detectivity and high responsivity. These photodetectors are highly desirable for applications such as infrared earth science and astronomy
remote sensing
optical communication
and thermal and medical imaging. Here
we report the design
growth
and characterization of a high-gain band-structure-engineered LWIR heterojunction phototransistor based on type-II superlattices. The 1/
e
cut-off wavelength of the device is 8.0 µm. At 77 K
unity optical gain occurs at a 90 mV applied bias with a dark current density of 3.2 × 10
-7
A/cm
2
. The optical gain of the device at 77 K saturates at a value of 276 at an applied bias of 220 mV. This saturation corresponds to a responsivity of 1284 A/W and a specific detectivity of 2.34 × 10
13
cm Hz
1/2
/W at a peak detection wavelength of ~6.8 µm. The type-II superlattice-based high-gain LWIR device shows the possibility of designing the high-performance gain-based LWIR photodetectors by implementing the band structure engineering approach.
Arora, K. et al. Ultrahigh performance of self-powered β-Ga2O3thin film solar-blind photodetector grown on cost-effective si substrate using high-temperature seed layer.ACS Photonics5, 2391-2401 (2018)..
Arora, K.&Kumar, M. Sputtered-growth of high-temperature seed-layer assisted β-Ga2O3thin film on silicon-substrate for cost-effective solar-blind photodetector application.ECS J. Solid State Sci. Technol.9, 065013 (2020)..
Kumar, N., Arora, K.&Kumar, M. High performance, flexible and room temperature grown amorphous Ga2O3solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes.J. Phys. D52, 335103 (2019)..
Dehzangi, A. et al. Type-II superlattices base visible/extended short-wavelength infrared photodetectors with a bandstructure-engineered photo-generated carrier extractor.Sci. Rep.9, 5003 (2019)..
Wu, D. H. et al. Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice.AIP Adv.10, 025018 (2020)..
Bianconi, S.&Mohseni, H. Recent advances in infrared imagers: toward thermodynamic and quantum limits of photon sensitivity.Rep. Prog. Phys.83, 044101 (2020)..
Arora, K. et al. Spectrally selective and highly sensitive UV photodetection with UV-A, C band specific polarity switching in silver plasmonic nanoparticle enhanced gallium oxide thin-film.Adv. Opt. Mater.8, 2000212 (2020)..
Haddadi, A. et al. Background-limited long wavelength infrared InAs/InAs1-xSbxtype-II superlattice-based photodetectors operating at 110 K.APL Mater.5, 035502 (2017)..
Beck, J. et al. The HgCdTe electron avalanche photodiode.J. Electron. Mater.35, 1166-1173 (2006)..
Vaidyanathan, M. et al. High performance ladar focal plane arrays for 3D range imaging. InProc. 2004 IEEE Aerospace Conference Proceedings. Big Sky, MT(IEEE, USA, 2004).
Razeghi, M.Technology of Quantum Devices(Springer, Boston, MA, 2010).
Rogalski, A. Infrared detectors: status and trends.Prog. Quantum Electron.27, 59-210 (2003)..
Liu, C. H. et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature.Nat. Nanotechnol.9, 273-278 (2014)..
Zhang, B. Y. et al. Broadband high photoresponse from pure monolayer graphene photodetector.Nat. Commun.4, 1811 (2013)..
Nair, R. R. et al. Fine structure constant defines visual transparency of graphene.Science320, 1308 (2008)..
Echtermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene.Nat. Commun.2, 458 (2011)..
Plötzing, T. et al. Experimental verification of carrier multiplication in graphene.Nano Lett.14, 5371-5375 (2014)..
Guo, Q. S. et al. Black phosphorus mid-infrared photodetectors with high gain.Nano Lett.16, 4648-4655 (2016)..
Bullock, J. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature.Nat. Photonics12, 601-607 (2018)..
Chen, X. L. et al. Widely tunable black phosphorus mid-infrared photodetector.Nat. Commun.8, 1672 (2017)..
Liu, B. L. et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties.Adv. Mater.27, 4423-4429 (2015)..
Long, M. S. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus.Sci. Adv.3, e1700589 (2017)..
Island, J. O. et al. Environmental instability of few-layer black phosphorus.2D Mater.2, 011002 (2015)..
Yu, X. C. et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor.Nat. Commun.9, 1545 (2018)..
Long, M. S. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability.ACS Nano13, 2511-2519 (2019)..
Long, M. S. et al. Progress, challenges, and opportunities for 2D material based photodetectors.Adv. Funct. Mater.29, 1803807 (2019)..
Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems.Nat. Nanotechnol.9, 780-793 (2014)..
Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials.Nat. Commun.9, 5266 (2018)..
Campbell, J. C.&Ogawa, K. Heterojunction phototransistors for long‐wavelength optical receivers.J. Appl. Phys.53, 1203-1208 (1982)..
Kroemer, H. Heterostructure bipolar transistors and integrated circuits.Proc. IEEE70, 13-25 (1982)..
Feng, M., Holonyak, N. Jr.&Hafez, W. Light-emitting transistor: light emission from InGaP/GaAs heterojunction bipolar transistors.Appl. Phys. Lett.84, 151-153 (2004)..
Livingston, H. A survey of heterojunction bipolar transistor (HBT) device reliability.IEEE Trans. Compon. Packag. Technol.27, 225-228 (2004)..
Ozkan, C. S.&Salmi, A. Heterojunction bipolar transistor (HBT) fabrication using a selectively deposited silicon germanium (SiGe). U.S. Patent No. 6, 531, 369 (2003).
Pei, Z. et al. A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor.IEEE Electron. Device Lett.24, 643-645 (2003)..
Rezaei, M. et al. InGaAs based heterojunction phototransistors: viable solution for high-speed and low-noise short wave infrared imaging.Appl. Phys. Lett.114, 161101 (2019)..
Capasso, F. et al. New graded band‐gap picosecond phototransistor.Appl. Phys. Lett.42, 93-95 (1983)..
Leu, L. Y., Gardner, J. T.&Forrest, S. R. A high‐gain, high‐bandwidth In0.53Ga0.47As/InP heterojunction phototransistor for optical communications.J. Appl. Phys.69, 1052-1062 (1991)..
Haddadi, A. et al. Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices.Appl. Phys. Lett.109, 021107 (2016)..
Dehzangi, A. et al. Extended short wavelength infrared heterojunction phototransistors based on type II superlattices.Appl. Phys. Lett.114, 191109 (2019)..
Sai‐Halasz, G. A., Tsu, R.&Esaki, L. A new semiconductor superlattice.Appl. Phys. Lett.30, 651-653 (1977)..
Razeghi, M.Focal Plane Arrays In Type II-superlattices(2005).
Nguyen, B. M. et al. Growth and characterization of long-wavelength infrared type-II superlattice photodiodes on a 3-in GaSb wafer.IEEE J. Quantum Electron.47, 686-690 (2011)..
Hoang, A. M. et al. High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices.Sci. Rep.6, 24144 (2016)..
Haddadi, A. et al. InAs/InAs1-xSbxtype-II superlattices for high performance long wavelength infrared detection.Appl. Phys. Lett.12, 121104 (2014)..
Haddadi, A. et al. High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbxsuperlattices.Appl. Phys. Lett.107, 141104 (2015)..
Wei, Y. J. et al. High quality type II InAs/GaSb superlattices with cutoff wavelength ~3.7 μm using interface engineering.J. Appl. Phys.94, 4720-4722 (2003)..
Wei, Y. J. et al. Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 μm.Appl. Phys. Lett.81, 3675-3677 (2002)..
Hoang, A. M. et al. Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices.Appl. Phys. Lett.100, 211101 (2012)..
Campbell, J. et al. InP/InGaAs heterojunction phototransistors.IEEE J. Quantum Electronics17, 264-269 (1981)..
Stillman, G. E.Optoelectronics. In Reference Data for Engineers9th edn. (eds Middleton, W. M.&Van Valkenburg, M. E. ). 21-1-21-31 (Newnes, Woburn, 2002).
Razeghi, M.Fundamentals of Solid State Engineering(Boston, MA: Springer, 2006).
Haddadi, A. et al. Bias-selectable nBn dual-band long-/very long-wavelength infrared photodetectors based on InAs/InAs1-xSbx/AlAs1-xSbxtype-II superlattices.Sci. Rep.7, 3379 (2017)..
Kelly, M. et al. Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays. InProc. SPIE 5902, Focal Plane Arrays for Space Telescopes II(SPIE, San Diego, USA, 2005).
Khoshakhlagh, A.Design of a Readout Integrated Circuit (ROIC) for Infrared Imaging Applications. MSc thesis (University of New Mexico, New Mexico, 2010).
Hu, G. et al. CMOS pixel sensor development: a fast read-out architecture with integrated zero suppression.J. Instrum.4, 04012 (2009)..
Dehzangi, A. et al. Impact of scaling base thickness on the performance of heterojunction phototransistors.Nanotechnology28, 10LT01 (2017)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution