1.Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
2.Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
3.Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
4.Department of Physics, Tsinghua University, 100084, Beijing, China
5.Department of Biomedical Engineering, Tsinghua University, 100084, Beijing, China
Chao He (chao.he@eng.ox.ac.uk)
Honghui He (he.honghui@sz.tsinghua.edu.cn)
Martin J. Booth (martin.booth@eng.ox.ac.uk)
Published:30 November 2021,
Published Online:22 September 2021,
Received:26 April 2021,
Revised:30 August 2021,
Accepted:01 September 2021
Scan QR Code
He, C. et al. Polarisation optics for biomedical and clinical applications: a review. Light: Science & Applications, 10, 2028-2047 (2021).
He, C. et al. Polarisation optics for biomedical and clinical applications: a review. Light: Science & Applications, 10, 2028-2047 (2021). DOI: 10.1038/s41377-021-00639-x.
Many polarisation techniques have been harnessed for decades in biological and clinical research
each based upon measurement of the vectorial properties of light or the vectorial transformations imposed on light by objects. Various advanced vector measurement/sensing techniques
physical interpretation methods
and approaches to analyse biomedically relevant information have been developed and harnessed. In this review
we focus mainly on summarising methodologies and applications related to tissue polarimetry
with an emphasis on the adoption of the Stokes–Mueller formalism. Several recent breakthroughs
development trends
and potential multimodal uses in conjunction with other techniques are also presented. The primary goal of the review is to give the reader a general overview in the use of vectorial information that can be obtained by polarisation optics for applications in biomedical and clinical research.
Ronchi, V.&Barocas, V.The Nature of Light: An Historical Survey(Harvard University Press, 1970).
Huard, S.Polarization of Light(Wiley, 1997).
Goldstein, D.Polarized Light2nd edn (Marcel Dekker, 2003).
Chipman, R. A., Lam, W. S. T.&Young, G.Polarized Light and Optical Systems(CRC Press, 2018).
Pérez, J. J. G.&Ossikovski, R.Polarized Light and the Mueller Matrix Approach(CRC Press, 2017).
Zhan, Q. W. Cylindrical vector beams: from mathematical concepts to applications.Adv. Opt. Photonics1, 1–57 (2009)..
Rosales-Guzmán, C., Ndagano, B.&Forbes, A. A review of complex vector light fields and their applications.J. Opt.20, 123001 (2018)..
Forbes, A., De Oliveira, M.&Dennis, M. R. Structured light.Nat. Photonics15, 253–262 (2021)..
Wang, J. W., Castellucci, F.&Franke-Arnold, S. Vectorial light–matter interaction: exploring spatially structured complex light fields.AVS Quantum Sci.2, 031702 (2020)..
Slussarenko, S. et al. Guiding light via geometric phases.Nat. Photonics10, 571–575 (2016)..
Cloude, S.Polarisation: Applications in Remote Sensing(OUP Oxford, 2009).
Ndagano, B. et al. Characterizing quantum channels with non-separable states of classical light.Nat. Phys.13, 397–402 (2017)..
Marrucci, L., Manzo, C.&Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media.Phys. Rev. Lett.96, 163905 (2006)..
Bliokh, K. Y. et al. Spin-orbit interactions of light.Nat. Photonics9, 796–808 (2015)..
Schulz, M. et al. Giant intrinsic circular dichroism of prolinol-derived squaraine thin films.Nat. Commun.9, 2413 (2018)..
He, H. H. et al. Mueller matrix polarimetry—an emerging new tool for characterizing the microstructural feature of complex biological specimen.J. Lightwave Technol.37, 2534–2548 (2019)..
Oldenbourg, R. A new view on polarization microscopy.Nature381, 811–812 (1996)..
Gurjar, R. S. et al. Imaging human epithelial properties with polarized light-scattering spectroscopy.Nat. Med.7, 1245–1248 (2001)..
Qiu, L. et al. Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett's esophagus.Nat. Med.16, 603–606 (2010)..
Ghosh, N.&Vitkin, I. A. Tissue polarimetry: concepts, challenges, applications, and outlook.J. Biomed. Opt.16, 110801 (2011)..
Novikova, T. et al. Special section guest editorial: polarized light for biomedical applications.J. Biomed. Opt.21, 071001 (2016)..
Tuchin, V. V. Polarized light interaction with tissues.J. Biomed. Opt.21, 071114 (2016)..
Ramella-Roman, J. C., Saytashev, I.&Piccini, M. A review of polarization-based imaging technologies for clinical and preclinical applications.J. Opt.22, 123001 (2020)..
Qi, J.&Elson, D. S. Mueller polarimetric imaging for surgical and diagnostic applications: a review.J. Biophotonics10, 950–982 (2017)..
Fujiwara, H.Spectroscopic Ellipsometry: Principles and Applications(John Wiley&Sons, 2007).
Azzam, R. M. A., Bashara, N. M.&Ballard, S. S. Ellipsometry and polarized light.Phys. Today31, 72 (1978)..
Mendoza-Galván, A. et al. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films.J. Opt.20, 024001 (2018)..
Azzam, R. M. A. Stokes-vector and Mueller-matrix polarimetry.J. Optical Soc. Am. A33, 1396–1408 (2016)..
Azzam, R. M. A. Mueller-matrix ellipsometry: a review.Proc. SPIE3121, 369–405 (1997)..
Song, B. K. et al. Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry.Appl. Surf. Sci.439, 1079–1087 (2018)..
Jiang, H. et al. Characterization of volume gratings based on distributed dielectric constant model using Mueller matrix ellipsometry.Appl. Sci.9, 698 (2019)..
Chang, J. T. et al. Division of focal plane polarimeter-based 3×4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues.J. Biomed. Opt.21, 056002 (2016)..
Fu, Y. F. et al. Flexible 3×3 Mueller matrix endoscope prototype for cancer detection.IEEE Trans. Instrum. Meas.67, 1700–1712 (2018)..
De Boer, J. F., Hitzenberger, C. K.&Yasuno, Y. Polarization sensitive optical coherence tomography—a review.Biomed. Opt. Express8, 1838–1873 (2017)..
Ghosh, N., Patel, H. S.&Gupta, P. K. Depolarization of light in tissue phantoms—effect of a distribution in the size of scatterers.Opt. Express11, 2198–2205 (2003)..
Kienle, A.&Hibst, R. Light guiding in biological tissue due to scattering.Phys. Rev. Lett.97, 018104 (2006)..
Baravian, C., Dillet, J.&Decruppe, J. P. Birefringence determination in turbid media.Phys. Rev. E75, 032501 (2007)..
Wang, X. D.&Wang, L. V. Propagation of polarized light in birefringent turbid media: a Monte Carlo study.J. Biomed. Opt.7, 279–290 (2002)..
Wang, X. D.&Wang, L. V. Propagation of polarized light in birefringent turbid media: time-resolved simulations.Opt. Express9, 254–259 (2001)..
Du, E. et al. Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media.J. Biomed. Opt.17, 126016 (2012)..
He, H. H. et al. Application of sphere-cylinder scattering model to skeletal muscle.Opt. Express18, 15104–15112 (2010)..
Chen, D. S. et al. Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing.Biomed. Opt. Express8, 3559–3570 (2017)..
Donner, C.&Jensen, H. W. Light diffusion in multi-layered translucent materials.ACM Trans. Graph.24, 1032–1039 (2005)..
Van De Hulst, H. C.Light Scattering by Small Particles(Dover Publications, 1981).
Wang, L. H., Jacques, S. L.&Zheng, L. Q. MCML—Monte Carlo modeling of light transport in multi-layered tissues.Comput. Methods Prog. Biomed.47, 131–146 (1995)..
Yun, T. L. et al. Monte Carlo simulation of polarized photon scattering in anisotropic media.Opt. Express17, 16590–16602 (2009)..
Brosseau, C.Fundamentals of Polarized Light: a Statistical Optics Approach(Wiley-Interscience, 1998).
Born, M.&Wolf, E.Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(Elsevier, 2013).
Ling, X. H. et al. Recent advances in the spin Hall effect of light.Rep. Prog. Phys.80, 066401 (2017)..
Rubinsztein-Dunlop, H. et al. Roadmap on structured light.J. Opt.19, 013001 (2017)..
Bass, M. et al.Handbook of Optics, Volume Ⅳ: Optical Properties of Materials3rd edn. (McGraw-Hill Education, 2009).
Lu, S. Y.&Chipman, R. A. Interpretation of Mueller matrices based on polar decomposition.J. Optical Soc. Am. A13, 1106–1113 (1996)..
Arteaga, O.&Canillas, A. Pseudopolar decomposition of the Jones and Mueller-Jones exponential polarization matrices.J. Optical Soc. Am. A26, 783–793 (2009)..
Ossikovski, R., De Martino, A.&Guyot, S. Forward and reverse product decompositions of depolarizing Mueller matrices.Opt. Lett.32, 689–691 (2007)..
Ortega-Quijano, N.&Arce-Diego, J. L. Mueller matrix differential decomposition.Opt. Lett.36, 1942–1944 (2011)..
Arteaga, O., Garcia-Caurel, E.&Ossikovski, R. Anisotropy coefficients of a Mueller matrix.J. Optical Soc. Am. A28, 548–553 (2011)..
He, H. H. et al. A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien.Photonics Lasers Med.2, 129–137 (2013)..
Ghosh, N., Wood, M. F. G.&Vitkin, I. A. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence.J. Biomed. Opt.13, 044036 (2008)..
Gil, J. J. Characteristic properties of Mueller matrices.J. Optical Soc. Am. A17, 328–334 (2000)..
Ossikovski, R. Analysis of depolarizing Mueller matrices through a symmetric decomposition.J. Optical Soc. Am. A26, 1109–1118 (2009)..
Vizet, J.&Ossikovski, R. Symmetric decomposition of experimental depolarizing Mueller matrices in the degenerate case.Appl. Opt.57, 1159–1167 (2018)..
Cloude, S. R. Group theory and polarisation algebra.Optik75, 26–36 (1985)..
Pezzaniti, J. L.&Chipman, R. A. Mueller matrix imaging polarimetry.Optical Eng.34, 1558–1568 (1995)..
Azzam, R. M. A. Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal.Opt. Lett.2, 148–150 (1978)..
Goldstein, D. H. Mueller matrix dual-rotating retarder polarimeter.Appl. Opt.31, 6676–6683 (1992)..
Smith, M. H. Optimization of a dual-rotating-retarder Mueller matrix polarimeter.Appl. Opt.41, 2488–2493 (2002)..
Dubreuil, M. et al. Snapshot Mueller matrix polarimeter by wavelength polarization coding.Opt. Express15, 13660–13668 (2007)..
He, C. et al. Full Poincare mapping for ultra-sensitive polarimetry. Preprint athttps://arxiv.org/abs/2101.09372https://arxiv.org/abs/2101.09372(2021).
Sabatke, D. S. et al. Optimization of retardance for a complete Stokes polarimeter.Opt. Lett.25, 802–804 (2000)..
Tyo, J. S. Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error.Appl. Opt.41, 619–630 (2002)..
He, C. et al. Linear polarization optimized Stokes polarimeter based on four-quadrant detector.Appl. Opt.54, 4458–4463 (2015)..
He, C. et al. Complex vectorial optics through gradient index lens cascades.Nat. Commun.10, 4264 (2019)..
Li, X. B. et al. Learning-based denoising for polarimetric images.Opt. Express28, 16309–16321 (2020)..
Abubakar, A. et al. A hybrid denoising algorithm of BM3D and KSVD for Gaussian noise in DoFP polarization images.IEEE Access8, 57451–57459 (2020)..
Bueno, J. M. Polarimetry using liquid-crystal variable retarders: theory and calibration.J. Opt. A: Pure Appl. Opt.2, 216–222 (2000)..
Skumanich, A. et al. The calibration of the advanced Stokes polarimeter.Astrophys. J. Suppl. Ser.110, 357–380 (1997)..
Arteaga, O. et al. Mueller matrix polarimetry with four photoelastic modulators: theory and calibration.Appl. Opt.51, 6805–6817 (2012)..
Smith, M. H. et al. Infrared Stokes polarimeter calibration.Proc. SPIE4133, 55–64 (2000)..
Tyo, J. S. et al. Review of passive imaging polarimetry for remote sensing applications.Appl. Opt.45, 5453–5469 (2006)..
Jacques, S. L., Ramella-Roman, J. C.&Lee, K. Imaging skin pathology with polarized light.J. Biomed. Opt.7, 329–340 (2002)..
Jacques, S. L., Roman, J. R.&Lee, K. Imaging superficial tissues with polarized light.Lasers Surg. Med.26, 119–129 (2000)..
Demos, S. G., Radousky, H. B.&Alfano, R. R. Deep subsurface imaging in tissues using spectral and polarization filtering.Opt. Express7, 23–28 (2000)..
Demos, S. G.&Alfano, R. R. Optical polarization imaging.Appl. Opt.36, 150–155 (1997)..
Groner, W. et al. Orthogonal polarization spectral imaging: a new method for study of the microcirculation.Nat. Med.5, 1209–1212 (1999)..
Bargo, P. R.&Kollias, N. Measurement of skin texture through polarization imaging.Br. J. Dermatol.162, 724–731 (2010)..
Sridhar, S.&Da Silva, A. Enhanced contrast and depth resolution in polarization imaging using elliptically polarized light.J. Biomed. Opt.21, 071107 (2016)..
Collett, E. Measurement of the four Stokes polarization parameters with a single circular polarizer.Opt. Commun.52, 77–80 (1984)..
Laude-Boulesteix, B. et al. Mueller polarimetric imaging system with liquid crystals.Appl. Opt.43, 2824–2832 (2004)..
Sornsin, E. A.&Chipman, R. A. Mueller matrix polarimetry of electro-optic PLZT spatial light modulators.Proc. SPIE2873, 196–201 (1996)..
Peinado, A., Lizana, A.&Campos, J. Optimization and tolerance analysis of a polarimeter with ferroelectric liquid crystals.Appl. Opt.52, 5748–5757 (2013)..
Alali, S., Gribble, A.&Vitkin, I. A. Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts.Opt. Lett.41, 1038–1041 (2016)..
Qi, J. et al. Narrow band 3 × 3 Mueller polarimetric endoscopy.Biomed. Opt. Express4, 2433–2449 (2013)..
Dong, Y. et al. Probing variations of fibrous structures during the development of breast ductal carcinoma tissues via Mueller matrix imaging.Biomed. Opt. Express11, 4960–4975 (2020)..
Dong, Y. et al. Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope.Biomed. Opt. Express8, 3643–3655 (2017)..
Dong, Y. et al. Deriving polarimetry feature parameters to characterize microstructural features in histological sections of breast tissues.IEEE Trans. Biomed. Eng.68, 881–892 (2021)..
Hagen, N., Oka, K.&Dereniak, E. L. Snapshot Mueller matrix spectropolarimeter.Opt. Lett.32, 2100–2102 (2007)..
Azzam, R. M. A. Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light.Opt. Acta. : Int. J. Opt.29, 685–689 (1982)..
Jellison, G. E. Jr. Four-channel polarimeter for time-resolved ellipsometry.Opt. Lett.12, 766–768 (1987)..
Compain, E.&Drevillon, B. Broadband division-of-amplitude polarimeter based on uncoated prisms.Appl. Opt.37, 5938–5944 (1998)..
Peinado,A. et al. Conical refraction as a tool for polarization metrology.Opt. Lett.38, 4100–4103 (2013)..
Haigh, J. A., Kinebas, Y.&Ramsay, A. J. Inverse conoscopy: a method to measure polarization using patterns generated by a single birefringent crystal.Appl. Opt.53, 184–188 (2014)..
Chang, J. T. et al. Single-shot spatially modulated Stokes polarimeter based on a GRIN lens.Opt. Lett.39, 2656–2659 (2014)..
Bhandari, P., Voss, K. J.&Logan, L. An instrument to measure the downwelling polarized radiance distribution in the ocean.Opt. Express19, 17609–17620 (2011)..
Pezzaniti, J. L.&Chenault, D. B. A division of aperture MWIR imaging polarimeter.Proc. SPIE5888, 58880V (2005)..
Zimmerman, B. G. et al. Pinhole array implementation of star test polarimetry.Proc. SPIE8949, 894912 (2014)..
Chun, C. S. L., Fleming, D. L.&Torok, E. J. Polarization-sensitive thermal imaging.Proc. SPIE2234, 275–286 (1994)..
Nordin, G. P. et al. Micropolarizer array for infrared imaging polarimetry.J. Optical Soc. Am. A16, 1168–1174 (1999)..
Andreou, A. G.&Kalayjian, Z. K. Polarization imaging: principles and integrated polarimeters.IEEE Sens. J.2, 566–576 (2002)..
Chen, Z. Y., Wang, X.&Liang, R. G. Calibration method of microgrid polarimeters with image interpolation.Appl. Opt.54, 995–1001 (2015)..
Gao, S. K.&Gruev, V. Bilinear and bicubic interpolation methods for division of focal plane polarimeters.Opt. Express19, 26161–26173 (2011)..
Gao, S. K.&Gruev, V. Gradient-based interpolation method for division-of-focal-plane polarimeters.Opt. Express21, 1137–1151 (2013)..
Gruev, V., Perkins, R.&York, T. CCD polarization imaging sensor with aluminum nanowire optical filters.Opt. Express18, 19087–19094 (2010)..
Hsu, W. L. et al. Polarization microscope using a near infrared full-Stokes imaging polarimeter.Opt. Express23, 4357–4368 (2015)..
Liu, Y. et al. Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor.J. Biomed. Opt.17, 116001 (2012)..
Millerd, J. et al. Pixelated phase-mask dynamic interferometers. InFringe 2005(ed Osten, W. ) 640–647 (Springer, 2006).
Ratliff, B. M., LaCasse, C. F.&Tyo, J. S. Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery.Opt. Express17, 9112–9125 (2009)..
Ratliff, B. M. et al. Dead pixel replacement in LWIR microgrid polarimeters.Opt. Express15, 7596–7609 (2007)..
Tyo, J. S., LaCasse, C. F.&Ratliff, B. M. Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters.Opt. Lett.34, 3187–3189 (2009)..
York, T.&Gruev, V. Calibration method for division of focal plane polarimeters in the optical and near-infrared regime.Proc. SPIE8012, 80120H (2011)..
York, T. et al. Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications.Proc. IEEE102, 1450–1469 (2014)..
Zhang, Z. G. et al. Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry.Rev. Sci. Instrum.85, 105002 (2014)..
Zhao, X. J. et al. Patterned dual-layer achromatic micro-quarter-wave-retarder array for active polarization imaging.Opt. Express22, 8024–8034 (2014)..
Oka, K.&Saito, N. Snapshot complete imaging polarimeter using Savart plates.Proc. SPIE6295, 629508 (2006)..
Suárez-Bermejo, J. C. et al. Mueller matrix polarimetry using full Poincaré beams.Opt. Lasers Eng.122, 134–141 (2019)..
Goldstein, D. H.&Chipman, R. A. Error analysis of a Mueller matrix polarimeter.J. Opt. Soc. Am. A7, 693–700 (1990)..
Ahmad, J. E.&Takakura, Y. Error analysis for rotating active Stokes–Mueller imaging polarimeters.Opt. Lett.31, 2858–2860 (2006)..
Dai, H.&Yan, C. X. Measurement errors resulted from misalignment errors of the retarder in a rotating-retarder complete Stokes polarimeter.Opt. Express22, 11869–11883 (2014)..
Mu, T. K. et al. Error analysis of single-snapshot full-Stokes division-of-aperture imaging polarimeters.Opt. Express23, 10822–10835 (2015)..
Macias-Romero, C.&Török, P. Eigenvalue calibration methods for polarimetry.J. Eur. Opt. Soc. Rapid Publ.7, 12004 (2012)..
Compain, E., Poirier, S.&Drevillon, B. General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers.Appl. Opt.38, 3490–3502 (1999)..
De Martino, A. et al. General methods for optimized design and calibration of Mueller polarimeters.Thin Solid Films455-456, 112–119 (2004)..
Marenko, V.&Molebnaya, T. Optimization of stokes polarimeters employing a measurement of 4intensities.Sov. J. Opt. Technol.57, 452–455 (1990)..
Ambirajan, A.&Look, D. C. Jr. Optimum angles for a Mueller matrix polarimeter.Proc. SPIE2265, 314–326 (1994)..
Ambirajan, A.&Look, D. C. Jr. Optimum angles for a polarimeter: partⅠ.Opt. Eng.34, 1651–1655 (1995)..
Tyo, J. S. Optimum linear combination strategy for anN-channel polarization-sensitive imaging or vision system.J. Opt. Soc. Am. A15, 359–366 (1998)..
Tyo, J. S. Relation between system optimization and systematic errors in Stokes vector polarimeters.Proc. SPIE4481, 22–30 (2002)..
Tyo, J. S. Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters.Opt. Lett.25, 1198–1200 (2000)..
Azzam, R. M. A., Elminyawi, I. M.&El-Saba, A. M. General analysis and optimization of the four-detector photopolarimeter.J. Opt. Soc. Am. A5, 681–689 (1988)..
Tyo, J. S. Considerations in polarimeter design.Proc. SPIE4133, 65–74 (2000)..
Peinado, A. et al. Optimization and performance criteria of a Stokes polarimeter based on two variable retarders.Opt. Express18, 9815–9830 (2010)..
Foreman, M. R., Favaro, A.&Aiello, A. Optimal frames for polarization state reconstruction.Phys. Rev. Lett.115, 263901 (2015)..
Foreman, M. R.&Goudail, F. On the equivalence of optimization metrics in Stokes polarimetry.Opt. Eng.58, 082410 (2019)..
Twietmeyer, K. M.&Chipman, R. A. Optimization of Mueller matrix polarimeters in the presence of error sources.Opt. Express16, 11589–11603 (2008)..
Beckley, A. M., Brown, T. G.&Alonso, M. A. Full Poincaré beams.Opt. Express18, 10777–10785 (2010)..
Beckley, A. M. Polarimetry and Beam Apodization Using Stress-engineered Optical Elements.PhD thesis(University of Rochester, New York, 2012).
Dewage, A. A. G.&Brown, T. Interferometric polarimetry using full-Poincar‚ beams.Proc. SPIE11701, 117010N (2021)..
Vella, A.&Alonso, M. A. Optimal birefringence distributions for imaging polarimetry.Opt. Express27, 36799–36814 (2019)..
Vella, A.&Alonso, M. A. Chapter Seven—maximum likelihood estimation in the context of an optical measurement.Prog. Opt.65, 231–311 (2020)..
Vella, A. J. Description and Applications of Space-variant Polarization States and Elements.PhD thesis. (University of Rochester, New York, 2018).
Ramkhalawon, R. D., Brown, T. G.&Alonso, M. A. Imaging the polarization of a light field.Opt. Express21, 4106–4115 (2013)..
Zimmerman, B. G.&Brown, T. G. Star test image-sampling polarimeter.Opt. Express24, 23154–23161 (2016)..
Chue-Sang, J. et al. Optical phantoms for biomedical polarimetry: a review.J. Biomed. Opt.24, 030901 (2019)..
Zhanghao, K. et al. Super-resolution dipole orientation mapping via polarization demodulation.Light. : Sci. Appl.5, e16166 (2016)..
Zhanghao, K. et al. Super-resolution fluorescence polarization microscopy.J. Innovative Opt. Health Sci.11, 1730002 (2018)..
Chen, L. et al. Advances of super-resolution fluorescence polarization microscopy and its applications in life sciences.Comput. Struct. Biotechnol. J.18, 2209–2216 (2020)..
Wu, P. J.&Walsh, J. T. Jr. Stokes polarimetry imaging of rat-tail tissue in a turbid medium using incident circularly polarized light.Lasers Surg. Med.37, 396–406 (2005)..
Macdonald, C.&Meglinski, I. Backscattering of circular polarized light from a disperse random medium influenced by optical clearing.Laser Phys. Lett.8, 324–328 (2011)..
Qi, J. et al. Assessment of tissue polarimetric properties using Stokes polarimetric imaging with circularly polarized illumination.J. Biophotonics11, e201700139 (2018)..
Kunnen, B. et al. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media.J. Biophotonics8, 317–323 (2015)..
Xu, M.&Alfano, R. R. Circular polarization memory of light.Phys. Rev. E72, 065601 (2005)..
Macdonald, C. M., Jacques, S. L.&Meglinski, I. V.Circular polarization memory in polydisperse scattering media.Phys. Rev. E91, 033204 (2015)..
Wood, M. F. et al. Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo.J. Biomed. Opt.14, 014029 (2009)..
Wang, Y. et al. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues.J. Biomed. Opt.21, 071112 (2016)..
Liu, T. et al. Distinguishing structural features between Crohn's disease and gastrointestinal luminal tuberculosis using Mueller matrix derived parameters.J. Biophotonics12, e201900151 (2019)..
Shen, Y. X. et al. Comparative study of the influence of imaging resolution on linear retardance parameters derived from the Mueller matrix.Biomed. Opt. Express12, 211–225 (2021)..
Pierangelo, A. et al. Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas.J. Biomed. Opt.18, 046014 (2013)..
Sun, M. H. et al. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters.Biomed. Opt. Express5, 4223–4234 (2014)..
Li, P. C. et al. Separating azimuthal orientation dependence in polarization measurements of anisotropic media.Opt. Express26, 3791–3800 (2018)..
Gil, J. J. Invariant quantities of a Mueller matrix under rotation and retarder transformations.J. Optical Soc. Am. A33, 52–58 (2016)..
Iqbal, M. et al. Comparative study of Mueller matrix transformation and polar decomposition for optical characterization of turbid media.Optik224, 165508 (2020)..
Sun, T. et al. Distinguishing anisotropy orientations originated from scattering and birefringence of turbid media using Mueller matrix derived parameters.Opt. Lett.43, 4092–4095 (2018)..
Khaliq, A. et al. Comparative study of 3 × 3 Mueller matrix transformation and polar decomposition.Opt. Commun.485, 126756 (2021)..
Tariq, A. et al. Physically realizable space for the purity-depolarization plane for polarized light scattering media.Phys. Rev. Lett.119, 033202 (2017)..
Swami, M. K. et al. Polar decomposition of 3 × 3 Mueller matrix: a tool for quantitative tissue polarimetry.Opt. Express14, 9324–9337 (2006)..
Wang, Y. F. et al. Study on the validity of 3 × 3 Mueller matrix decomposition.J. Biomed. Opt.20, 065003 (2015)..
Morio, J.&Goudail, F. Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices.Opt. Lett.29, 2234–2236 (2004)..
Ghosh, N., Wood, M. F. G.&Vitkin, I. A. Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues.Opt. Commun.283, 1200–1208 (2010)..
Li, P. C. et al. Analysis of tissue microstructure with Mueller microscopy: logarithmic decomposition and Monte Carlo modeling.J. Biomed. Opt.25, 015002 (2020)..
Li, P. C. et al. Characteristic Mueller matrices for direct assessment of the breaking of symmetries.Opt. Lett.45, 706–709 (2020)..
Vizet, J. et al. In vivo imaging of uterine cervix with a Mueller polarimetric colposcope.Sci. Rep.7, 2471 (2017)..
Zhanghao, K. et al. High-dimensional super-resolution imaging reveals heterogeneity and dynamics of subcellular lipid membranes.Nat. Commun.11, 5890 (2020)..
Zhanghao, K. et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy.Nat. Commun.10, 4694 (2019)..
Spandana, K. U., Mahato, K. K.&Mazumder, N. Polarization-resolved Stokes–Mueller imaging: a review of technology and applications.Lasers Med. Sci.34, 1283–1293 (2019)..
Yang, B. et al. Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures.Biomed. Opt. Express6, 1520–1533 (2015)..
Clancy, N. T. et al. Polarised stereo endoscope and narrowband detection for minimal access surgery.Biomed. Opt. Express5, 4108–4117 (2014)..
Manhas, S. et al. Demonstration of full 4 × 4 Mueller polarimetry through an optical fiber for endoscopic applications.Opt. Express23, 3047–3054 (2015)..
Wood, T. C.&Elson, D. S. Polarization response measurement and simulation of rigid endoscopes.Biomed. Opt. Express1, 463–470 (2010)..
Vizet, J. et al. Optical fiber-based full Mueller polarimeter for endoscopic imaging using a two-wavelength simultaneous measurement method.J. Biomed. Opt.21, 071106 (2016)..
Rivet, S., Bradu, A.&Podoleanu, A. 70 kHz full 4 x 4 Mueller polarimeter and simultaneous fiber calibration for endoscopic applications.Opt. Express23, 23768–23786 (2015)..
Forward, S. et al. Flexible polarimetric probe for 3 × 3 Mueller matrix measurements of biological tissue.Sci. Rep.7, 11958 (2017)..
Backman, V. et al. Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ.IEEE J. Sel. Top. Quantum Electron.5, 1019–1026 (1999)..
Chan, D. et al. In vivo spectroscopic ellipsometry measurements on human skin.J. Biomed. Opt.12, 014023 (2007)..
Banerjee, P. et al. Probing the fractal pattern and organization ofBacillus thuringiensisbacteria colonies growing under different conditions using quantitative spectral light scattering polarimetry.J. Biomed. Opt.18, 035003 (2013)..
Soni, J. et al. Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system.Opt. Express21, 15475–15489 (2013)..
Jagtap, J. et al. Quantitative Mueller matrix fluorescence spectroscopy for precancer detection.Opt. Lett.39, 243–246 (2014)..
Satapathi, S., Soni, J.&Ghosh, N. Fluorescent Mueller matrix analysis of a highly scattering turbid media.Appl. Phys. Lett.104, 131902 (2014)..
Huse, N., Schöenle, A.&Hell, S. W. Z-polarized confocal microscopy.J. Biomed. Opt.6, 273–276 (2001)..
Lim, N. S. J. et al. Early detection of biomolecular changes in disrupted porcine cartilage using polarized Raman spectroscopy.J. Biomed. Opt.16, 017003 (2011)..
Ahlawat, S. et al. Polarized Raman spectroscopic investigations on hemoglobin ordering in red blood cells.J. Biomed. Opt.19, 087002 (2014)..
Chan, K. H. et al. Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography.J. Biophotonics8, 36–45 (2015)..
De Boer, J. F.&Milner, T. E. Review of polarization sensitive optical coherence tomography and Stokes vector determination.J. Biomed. Opt.7, 359–371 (2002)..
Fan, C. M.&Yao, G. Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography.Biomed. Opt. Express4, 460–465 (2013)..
Gladkova, N. et al. Evaluation of oral mucosa collagen condition with cross-polarization optical coherence tomography.J. Biophotonics6, 321–329 (2013)..
Hitzenberger, C. K. et al. Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography.Opt. Express9, 780–790 (2001)..
Hong, Y. J. et al. Optically buffered Jones-matrix-based multifunctional optical coherence tomography with polarization mode dispersion correction.Biomed. Opt. Express6, 225–243 (2015)..
Jiao, S. L., Yao, G.&Wang, L. V. Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography.Appl. Opt.39, 6318–6324 (2000)..
Kuranov, R. V. et al. Complementary use of cross-polarization and standard OCT for differential diagnosis of pathological tissues.Opt. Express10, 707–713 (2002)..
Lee, R. C. et al. Automated assessment of the remineralization of artificial enamel lesions with polarization-sensitive optical coherence tomography.Biomed. Opt. Express5, 2950–2962 (2014)..
Popescu, D. P. et al. Assessment of early demineralization in teeth using the signal attenuation in optical coherence tomography images.J. Biomed. Opt.13, 054053 (2008)..
Sugita, M. et al. Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT.Biomed. Opt. Express6, 1030–1054 (2015)..
Ugryumova, N. et al. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography.J. Phys. D: Appl. Phys.38, 2612–2619 (2005)..
Vitkin, A., Ghosh, N.&De Martino, A. Tissue polarimetry.Photonics. : Sci. Found. Technol. Appl.4, 239–321 (2015)..
Tuchin, V. V., Wang, L. V.&Zimnyakov, D. A.Optical Polarization in Biomedical Applications(Springer, 2006).
Wang, L. V., Coté, G. L.&Jacques, S. L. Special section guest editorial: tissue polarimetry.J. Biomed. Opt.7, 278 (2002)..
Wang, L. V.&Wu, H. I.Biomedical Optics: Principles and Imaging(John Wiley&Sons, 2009).
Wang, S.&Larin, K. V. Optical coherence elastography for tissue characterization: a review.J. Biophotonics8, 279–302 (2015)..
Yamanari, M. et al. Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo.Biomed. Opt. Express5, 1391–1402 (2014)..
Yao, G.&Wang, L. V. Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography.Opt. Lett.24, 537–539 (1999)..
Milione, G. et al. Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams.J. Opt.17, 035617 (2015)..
Mansfield, J. C. et al. Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy.J. Biomed. Opt.13, 044020 (2008)..
Tanaka, Y. et al. Motion-artifact-robust, polarization-resolved second-harmonic-generation microscopy based on rapid polarization switching with electro-optic Pockells cell and its application to in vivo visualization of collagen fiber orientation in human facial skin.Biomed. Opt. Express5, 1099–1113 (2014)..
DeWalt, E. L. et al. Polarization-modulated second harmonic generation ellipsometric microscopy at video rate.Anal. Chem.86, 8448–8456 (2014)..
Pavone, F. S.&Campagnola, P. J.Second Harmonic Generation Imaging(CRC Press, 2013).
Brasselet, S. Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging.Adv. Opt. Photonics3, 205–271 (2011)..
Kapsokalyvas, D. et al. In-vivo imaging of psoriatic lesions with polarization multispectral dermoscopy and multiphoton microscopy.Biomed. Opt. Express5, 2405–2419 (2014)..
Golaraei, A. et al. Characterization of collagen in non-small cell lung carcinoma with second harmonic polarization microscopy.Biomed. Opt. Express5, 3562–3567 (2014)..
Daly, S. M.&Leahy, M. J. 'Go with the flow': a review of methods and advancements in blood flow imaging.J. Biophotonics6, 217–255 (2013)..
Wolf, E.Introduction to the Theory of Coherence and Polarization of Light(Cambridge University Press, 2007).
Abrahamsson, S. et al. MultiFocus polarization microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously.Opt. Express23, 7734–7754 (2015)..
Chen, D. S. et al. Study of optical clearing in polarization measurements by Monte Carlo simulations with anisotropic tissue-mimicking models.J. Biomed. Opt.21, 081209 (2016)..
Wang, Y. et al. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope.Micron79, 8–15 (2015)..
Hafi, N. et al. Fluorescence nanoscopy by polarization modulation and polarization angle narrowing.Nat. Methods11, 579–584 (2014)..
Cruz, C. A. V. et al. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy.Proc. Natl Acad. Sci. USA113, E820–E828 (2016)..
Kampmann, M. et al. Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy.Nat. Struct. Mol. Biol.18, 643–649 (2011)..
Sase, I. et al. Axial rotation of sliding actin filaments revealed by single-fluorophore imaging.Proc. Natl Acad. Sci. USA94, 5646–5650 (1997)..
Forkey, J. N. et al. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization.Nature422, 399–404 (2003)..
Sosa, H. et al. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy.Nat. Struct. Biol.8, 540–544 (2001)..
DeMay, B. S. et al. Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals.J. Cell Biol.193, 1065–1081 (2011)..
DeMay, B. S. et al. Rapid and quantitative imaging of excitation polarized fluorescence reveals ordered septin dynamics in live yeast.Biophys. J.101, 985–994 (2011)..
Axelrod, D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization.Biophys. J.26, 557–573 (1979)..
Schütz, G. J., Schindler, H.&Schmidt, T. Imaging single-molecule dichroism.Opt. Lett.22, 651–653 (1997)..
Du, E. et al.Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues.J. Biomed. Opt.19, 076013 (2014)..
Pierangelo, A. et al. Polarimetric imaging of uterine cervix: a case study.Opt. Express21, 14120–14130 (2013)..
Rehbinder, J. et al. Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation.J. Biomed. Opt.21, 071113 (2016)..
Shukla, P.&Pradhan, A. Mueller decomposition images for cervical tissue: potential for discriminating normal and dysplastic states.Opt. Express17, 1600–1609 (2009)..
Chue-Sang, J. et al. Use of combined polarization-sensitive optical coherence tomography and Mueller matrix imaging for the polarimetric characterization of excised biological tissue.J. Biomed. Opt.21, 071109 (2016)..
Novikova, T. et al. The origins of polarimetric image contrast between healthy and cancerous human colon tissue.Appl. Phys. Lett.102, 241103 (2013)..
Ahmad, I. et al. Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry.J. Biomed. Opt.20, 056012 (2015)..
Pierangelo, A. et al. Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging.Opt. Express19, 1582–1593 (2011)..
Pierangelo, A. et al. Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging.J. Biomed. Opt.17, 066009 (2012)..
Dubreuil, M. et al. Mueller matrix polarimetry for improved liver fibrosis diagnosis.Opt. Lett.37, 1061–1063 (2012)..
Wang, W. F. et al. Roles of linear and circular polarization properties and effect of wavelength choice on differentiation between ex vivo normal and cancerous gastric samples.J. Biomed. Opt.19, 046020 (2014)..
Borovkova, M. et al. Evaluatingβ-amyloidosis progression in Alzheimer's disease with Mueller polarimetry.Biomed. Opt. Express11, 4509–4519 (2020)..
Alali, S. et al. Assessment of local structural disorders of the bladder wall in partial bladder outlet obstruction using polarized light imaging.Biomed. Opt. Express5, 621–629 (2014)..
Backman, V. et al. Detection of preinvasive cancer cells.Nature406, 35–36 (2000)..
Qi, J.&Elson, D. S. A high definition Mueller polarimetric endoscope for tissue characterisation.Sci. Rep.6, 25953 (2016)..
Gan, Y.&Fleming, C. P. Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography.Biomed. Opt. Express4, 2150–2165 (2013)..
Pham, H. T. T. et al. Optical parameters of human blood plasma, collagen, and calfskin based on the Stokes–Mueller technique.Appl. Opt.57, 4353–4359 (2018)..
Lu, R. W. et al. A polarization-sensitive light field imager for multi-channel angular spectroscopy of light scattering in biological tissues.Quant. Imaging Med. Surg.5, 1–8 (2015)..
Ghosh, N. et al. Mueller matrix decomposition for polarized light assessment of biological tissues.J. Biophotonics2, 145–156 (2009)..
Wood, M. F. G. et al. Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues.J. Biomed. Opt.15, 047009 (2010)..
Ahmad, I. et al. Polarimetric assessment of healthy and radiofrequency ablated porcine myocardial tissue.J. Biophotonics9, 750–759 (2016)..
He, H. H. et al. Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging.J. Biophotonics10, 664–673 (2017)..
Sugita, S.&Matsumoto, T. Quantitative measurement of the distribution and alignment of collagen fibers in unfixed aortic tissues.J. Biomech.46, 1403–1407 (2013)..
Saytashev, I. et al. Self validating Mueller matrix Micro–Mesoscope (SAMMM) for the characterization of biological media.Opt. Lett.45, 2168–2171 (2020)..
Chen, Z. H. et al. A collinear reflection Mueller matrix microscope for backscattering Mueller matrix imaging.Opt. Lasers Eng.129, 106055 (2020)..
Gonzalez, M. et al. Design and implementation of a portable colposcope Mueller matrix polarimeter.J. Biomed. Opt.25, 116006 (2020)..
Zotter, S. et al. Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT.Investigative Ophthalmol. Vis. Sci.54, 72–84 (2013)..
Dong, Y. et al. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry.Sci. Rep.7, 14702 (2017)..
Liu, X. Y. et al. Tissue-like phantoms for quantitative birefringence imaging.Biomed. Opt. Express8, 4454–4465 (2017)..
Swami, M. K. et al. Effect of gold nanoparticles on depolarization characteristics of Intralipid tissue phantom.Opt. Lett.38, 2855–2857 (2013)..
Guo, Y. H. et al. Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media.J. Biomed. Opt.19, 065001 (2014)..
Li, X. P. et al. Polarimetric learning: a Siamese approach to learning distance metrics of algal Mueller matrix images.Appl. Opt.57, 3829–3837 (2018)..
Heinrich, C. et al. Mueller polarimetric imaging of biological tissues: classification in a decision-theoretic framework.J. Opt. Soc. Am. A35, 2046–2057 (2018)..
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics.Nature588, 39–47 (2020)..
Rivenson, Y. et al. Deep learning microscopy.Optica4, 1437–1443 (2017)..
He, C. et al. Vectorial adaptive optics: correction of polarization and phase. inAdaptive Optics and Wavefront Control for Biological Systems VI. Vol. 11248 (eds Bifano, T. G., Gigan, S.,&Ji, N. ) (International Society for Optics and Photonics, 2020).https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11248/1124808/Vectorial-adaptive-opticscorrection-of-polarization-and-phase/10.1117/12.2547715.full?SSO=1https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11248/1124808/Vectorial-adaptive-opticscorrection-of-polarization-and-phase/10.1117/12.2547715.full?SSO=1..
Hu, Q. et al. Arbitrary vectorial state conversion using liquid crystal spatial light modulators.Opt. Commun.459, 125028 (2020)..
Hu, Q., He, C.&Booth, M. J. Arbitrary complex retarders using a sequence of spatial light modulators as the basis for adaptive polarisation compensation.J. Opt.23, 065602 (2021)..
Dai, Y. Y. et al. Active compensation of extrinsic polarization errors using adaptive optics.Opt. Express27, 35797–35810 (2019)..
Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera.Science365, eaax1839 (2019)..
Dorrah, A. H. et al. Metasurface optics for on-demand polarization transformations along the optical path.Nat. Photonics15, 287–296 (2021)..
Pan, T. et al. Biophotonic probes for bio-detection and imaging.Light. : Sci. Appl.10, 124 (2021)..
Samim, M., Krouglov, S.&Barzda, V. Nonlinear Stokes-Mueller polarimetry.Phys. Rev. A93, 013847 (2016)..
Kontenis, L. et al. inCLEO: Science and Innovations(Optical Society of America, 2016).
Okoro, C. Second-harmonic Generation-based Mueller Matrix Polarization Analysis Of Collagen-rich Tissues.PhD thesis(University of Illinois, Urbana-Champaign, Urbana, 2018).
Krouglov, S.&Barzda, V. Three-dimensional nonlinear Stokes–Mueller polarimetry.J. Opt. Soc. Am. B36, 541–550 (2019)..
Azzam, R. M. A. Arrangement of four photodetectors for measuring the state of polarization of light.Opt. Lett.10, 309–311 (1985)..
Mehta, S. B. et al. Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells.Proc. Natl Acad. Sci. USA113, E6352–E6361 (2016)..
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution