1.Laboratory of All-solid-state Light Sources, Beijing Engineering Research Center, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
2.Synlumin Conuninex (Shanghai) Enterprise Development Co., Ltd., 201401 Shanghai, China
3.Time-wave-space Optical Technology (Xiaogan) Co., Ltd., 432012 Xiaogan, Hubei, China
4.High-dimensional Plasma Sources Technology (Xiaogan) Co., Ltd., 432012 Xiaogan, Hubei, China
Xuechun Lin (xclin@semi.ac.cn)
Scan for full text
Zhang, L. D. et al. Design of coherent wideband radiation process in a Nd3+-doped high entropy glass system. Light: Science & Applications, 11, 2065-2076 (2022).
Zhang, L. D. et al. Design of coherent wideband radiation process in a Nd3+-doped high entropy glass system. Light: Science & Applications, 11, 2065-2076 (2022). DOI: 10.1038/s41377-022-00848-y.
We discover that the spatially coherent radiation within a certain frequency range can be obtained without a common nonlinear optical process. Conventionally, the emission spectra were obtained by de-exciting excited centers from real excited energy levels to the ground state. Our findings are achieved by deploying a high-entropy glass system (HEGS) doped with neodymium ions. The HEGS exhibits a much broader infrared absorption than common glass systems, which can be attributed to be high-frequency optical branch phonons or allowable multi-phonon processes caused by phonon broadening in the system. A broadened phonon-assisted wideband radiation (BPAWR) is induced if the pump laser is absorbed by the system. The subsequent low-threshold self-absorption coherence modulation (SACM) can be controlled by changing excitation wavelengths, sample size, and doping concentrations. The SACM can be red-shifted through the emission of phonons of the excited species and be blue-shifted by absorbing phonons before they are de-excited. There is a time delay up to 1.66 ns between the pump pulse and the BPAWR when measured after traveling through a 35 mm long sample, which is much longer than the Raman process. The BPAWR-SACM can amplify the centered non-absorption band with a gain up to 26.02 dB. These results reveal that the shift of the novel radiation is determined by the frequency of the non-absorption band near the absorption region, and therefore the emission shifts can be modulated by changing the absorption spectrum. When used in fiber lasers, the BPAWR-SACM process may help to achieve tunability.
E. Cannuccia , B. Monserrat , C. Attaccalite . Theory of phonon-assisted luminescence in solids: application to hexagonal boron nitride . Phys. Rev. B , 2019 . 99 081109 DOI:10.1103/PhysRevB.99.081109http://doi.org/10.1103/PhysRevB.99.081109 .
M. F. Gelin , 等 . Generalized Huang-Rhys factors for molecular aggregates . Chem. Phys. , 2020 . 528 110495 DOI:10.1016/j.chemphys.2019.110495http://doi.org/10.1016/j.chemphys.2019.110495 .
A. Alkauskas , 等 . First-principles calculations of luminescence spectrum line shapes for defects in semiconductors: the example of GaN and ZnO . Phys. Rev. Lett. , 2012 . 109 267401 DOI:10.1103/PhysRevLett.109.267401http://doi.org/10.1103/PhysRevLett.109.267401 .
H. Wu , 等 . Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ system . J. Phys. Chem. C. , 2018 . 122 9611 -9618 . DOI:10.1021/acs.jpcc.8b02446http://doi.org/10.1021/acs.jpcc.8b02446 .
A. M. Moran , 等 . Vibronic effects on solvent dependent linear and nonlinear optical properties of push-pull chromophores: julolidinemalononitrile . J. Chem. Phys. , 2002 . 116 2542 -2555 . DOI:10.1063/1.1433966http://doi.org/10.1063/1.1433966 .
K. Gong , D. F. Kelley , A. M. Kelley . Resonance raman spectroscopy and electron–phonon coupling in zinc selenide quantum dots . J. Phys. Chem. C , 2016 . 120 29533 -29539 . DOI:10.1021/acs.jpcc.6b12202http://doi.org/10.1021/acs.jpcc.6b12202 .
R. J. H. Clark , T. J. Dines . Resonance raman spectroscopy, and its application to inorganic chemistry. New analytical methods (27) . Angew. Chem. Int. Ed. , 1986 . 25 131 -158 . DOI:10.1002/anie.198601311http://doi.org/10.1002/anie.198601311 .
A. Chernikov , 等 . Phonon-assisted luminescence of polar semiconductors: fröhlich coupling versus deformation-potential scattering . Phys. Rev. B , 2012 . 85 035201 DOI:10.1103/PhysRevB.85.035201http://doi.org/10.1103/PhysRevB.85.035201 .
J. Madéo , 等 . Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors . Science , 2020 . 370 1199 -1204 . DOI:10.1126/science.aba1029http://doi.org/10.1126/science.aba1029 .
D. B. Wang , A. Fernandez-Martinez . Order from disorder . Science , 2012 . 337 812 -813 . DOI:10.1126/science.1226048http://doi.org/10.1126/science.1226048 .
M. A. Vouk , E. C. Lightowlers . Two-phonon assisted free exciton recombination radiation from intrinsic silicon . J. Phys. C: Solid State Phys. , 1977 . 10 3689 -3699 . DOI:10.1088/0022-3719/10/18/031http://doi.org/10.1088/0022-3719/10/18/031 .
V. A. Belyakov , 等 . Phonon-assisted radiative electron-hole recombination in silicon quantum dots . Phys. Solid State , 2004 . 46 27 -31 . DOI:10.1134/1.1641914http://doi.org/10.1134/1.1641914 .
B. Fultz . Vibrational thermodynamics of materials . Prog. Mater. Sci. , 2010 . 55 247 -352 . DOI:10.1016/j.pmatsci.2009.05.002http://doi.org/10.1016/j.pmatsci.2009.05.002 .
A. R. Overy , 等 . Phonon broadening from supercell lattice dynamics: random and correlated disorder . Phys. Status Solidi B , 2017 . 254 1600586 DOI:10.1002/pssb.201600586http://doi.org/10.1002/pssb.201600586 .
H. T. Munasinghe , 等 . Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications . Optical Mater. Express , 2013 . 3 1488 -1503 . DOI:10.1364/OME.3.001488http://doi.org/10.1364/OME.3.001488 .
R. R. Gattass , E. Mazur . Femtosecond laser micromachining in transparent materials . Nat. Photonics , 2008 . 2 219 -225 . DOI:10.1038/nphoton.2008.47http://doi.org/10.1038/nphoton.2008.47 .
S. S. Lin , 等 . High-security-level multi-dimensional optical storage medium: nanostructured glass embedded with LiGa5O8: Mn2+ with photostimulated luminescence . Light.: Sci. Appl. , 2020 . 9 22 DOI:10.1038/s41377-020-0258-3http://doi.org/10.1038/s41377-020-0258-3 .
F. Körmann , 等 . Phonon broadening in high entropy alloys . npj Comput. Mater. , 2017 . 3 36 DOI:10.1038/s41524-017-0037-8http://doi.org/10.1038/s41524-017-0037-8 .
X. Y. Li , 等 . Observation of high-frequency transverse phonons in metallic glasses . Phys. Rev. Lett. , 2020 . 124 225902 DOI:10.1103/PhysRevLett.124.225902http://doi.org/10.1103/PhysRevLett.124.225902 .
S. Gelin , H. Tanaka , A. Lemaître . Anomalous phonon scattering and elastic correlations in amorphous solids . Nat. Mater. , 2016 . 15 1177 -1181 . DOI:10.1038/nmat4736http://doi.org/10.1038/nmat4736 .
J. W. Yeh , 等 . Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes . Adv. Eng. Mater. , 2004 . 6 299 -303 . DOI:10.1002/adem.200300567http://doi.org/10.1002/adem.200300567 .
W. H. Wang . High-entropy metallic glasses . JOM , 2014 . 66 2067 -2077 . DOI:10.1007/s11837-014-1002-3http://doi.org/10.1007/s11837-014-1002-3 .
C. Oses , C. Toher , S. Curtarolo . High-entropy ceramics . Nat. Rev. Mater. , 2020 . 5 295 -309 . DOI:10.1038/s41578-019-0170-8http://doi.org/10.1038/s41578-019-0170-8 .
X. Zhang , 等 . Three-dimensional high-entropy alloy–polymer composite nanolattices that overcome the strength–recoverability trade-off . Nano Lett. , 2018 . 18 4247 -4256 . DOI:10.1021/acs.nanolett.8b01241http://doi.org/10.1021/acs.nanolett.8b01241 .
W. M. Tolles , 等 . A review of the theory and application of coherent anti-stokes raman spectroscopy (CARS) . Appl. Spectrosc. , 1977 . 31 253 -271 . DOI:10.1366/000370277774463625http://doi.org/10.1366/000370277774463625 .
W. J. Tipping , 等 . Stimulated Raman scattering microscopy: an emerging tool for drug discovery . Chem. Soc. Rev. , 2016 . 45 2075 -2089 . DOI:10.1039/C5CS00693Ghttp://doi.org/10.1039/C5CS00693G .
L. Berthier , M. Ozawa , C. Scalliet . Configurational entropy of glass-forming liquids . J. Chem. Phys. , 2019 . 150 160902 DOI:10.1063/1.5091961http://doi.org/10.1063/1.5091961 .
Q. Hu , 等 . Parametric study of amorphous high-entropy alloys formation from two new perspectives: atomic radius modification and crystalline structure of alloying elements . Sci. Rep. , 2017 . 7 39917 DOI:10.1038/srep39917http://doi.org/10.1038/srep39917 .
S. A. Kube , 等 . Phase selection motifs in High Entropy Alloys revealed through combinatorial methods: large atomic size difference favors BCC over FCC . Acta Materialia , 2019 . 166 677 -686 . DOI:10.1016/j.actamat.2019.01.023http://doi.org/10.1016/j.actamat.2019.01.023 .
T. M. Murphy , 等 . Enthalpy recovery and structural relaxation in layered glassy polymer films . Polymer , 2012 . 53 4002 -4009 . DOI:10.1016/j.polymer.2012.07.012http://doi.org/10.1016/j.polymer.2012.07.012 .
K. Haque , K. Kawai , T. Suzuki . Glass transition and enthalpy relaxation of amorphous lactose glass . Carbohydr. Res. , 2006 . 341 1884 -1889 . DOI:10.1016/j.carres.2006.04.040http://doi.org/10.1016/j.carres.2006.04.040 .
F. Cámara , 等 . Non-convergent ordering and displacive phase transition in pigeonite: in situ HT XRD study . Phys. Chem. Miner. , 2002 . 29 331 -340 . DOI:10.1007/s00269-002-0241-yhttp://doi.org/10.1007/s00269-002-0241-y .
M. K. Gunde . Vibrational modes in amorphous silicon dioxide . Phys. B: Condens. Matter , 2000 . 292 286 -295 . DOI:10.1016/S0921-4526(00)00475-0http://doi.org/10.1016/S0921-4526(00)00475-0 .
W. Yan , 等 . Effect of second Si–O vibrational overtones/combinations on quantifying water in silicate and silica minerals using infrared spectroscopy, and an experimental method for its removal . Phys. Chem. Miner. , 2022 . 49 5 DOI:10.1007/s00269-022-01179-5http://doi.org/10.1007/s00269-022-01179-5 .
K. Yoshimoto , 等 . Low phonon energies and wideband optical windows of La2O3-Ga2O3 glasses prepared using an aerodynamic levitation technique . Sci. Rep. , 2017 . 7 45600 DOI:10.1038/srep45600http://doi.org/10.1038/srep45600 .
X. Jiang , 等 . Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre . Nat. Photonics , 2015 . 9 133 -139 . DOI:10.1038/nphoton.2014.320http://doi.org/10.1038/nphoton.2014.320 .
J. B. Gruber , 等 . Energy-level structure and spectral analysis of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12 . J. Appl. Phys. , 2004 . 96 3050 -3056 . DOI:10.1063/1.1776320http://doi.org/10.1063/1.1776320 .
A. A. S. da Gama , 等 . Energy levels of Nd3+ in LiYF4 . J. Chem. Phys. , 1981 . 75 2583 -2587 . DOI:10.1063/1.442410http://doi.org/10.1063/1.442410 .
J. Zhu , Q. Wang . Excitation wavelength dependence of Raman scattering and substrate dependence on hydrogenated silicon-based thin film . Phys. B: Condens. Matter , 2018 . 545 315 -322 . DOI:10.1016/j.physb.2018.06.037http://doi.org/10.1016/j.physb.2018.06.037 .
T. Fujisawa , M. Terazima , Y. Kimura . Excitation wavelength dependence of the Raman-Stokes shift of N, N-dimethyl-p-nitroaniline . J. Chem. Phys. , 2006 . 124 184503 DOI:10.1063/1.2194550http://doi.org/10.1063/1.2194550 .
D. G. Kang , 等 . Improved spectral resolution of the femtosecond stimulated Raman spectroscopy achieved by the use of the 2nd-order diffraction method . Sci. Rep. , 2021 . 11 3361 DOI:10.1038/s41598-021-83090-7http://doi.org/10.1038/s41598-021-83090-7 .
M. Marrocco . Closed-form solutions to time model for hybrid fs/ps coherent anti-Stokes Raman scattering . J. Raman Spectrosc. , 2017 . 48 1033 -1039 . DOI:10.1002/jrs.5192http://doi.org/10.1002/jrs.5192 .
P. Chýlek , 等 . Time delay of stimulated Raman scattering of micron-size droplets . Appl. Phys. Lett. , 1988 . 52 1642 -1644 . DOI:10.1063/1.99708http://doi.org/10.1063/1.99708 .
J. P. Ogilvie , 等 . Time-delayed coherent Raman spectroscopy . Mol. Phys. , 2008 . 106 587 -594 . DOI:10.1080/00268970801961005http://doi.org/10.1080/00268970801961005 .
M. L. De Giorgi , 等 . Amplified spontaneous emission threshold reduction and operational stability improvement in CsPbBr3 nanocrystals films by hydrophobic functionalization of the substrate . Sci. Rep. , 2019 . 9 17964 DOI:10.1038/s41598-019-54412-7http://doi.org/10.1038/s41598-019-54412-7 .
X. Y. Huang , 等 . Loss-induced nonreciprocity . Light.: Sci. Appl. , 2021 . 10 30 DOI:10.1038/s41377-021-00464-2http://doi.org/10.1038/s41377-021-00464-2 .
P. Kaur , 等 . Evaluation of gain spectrum of silica-based single/dual-pumped thulium-doped fiber amplifier (TDFA) by optimizing its physical and pumping parameters in the scenario of dense wavelength division multiplexed systems (DWDM) . J. Optical Commun. , 2019 . 40 353 -362 . DOI:10.1515/joc-2017-0100http://doi.org/10.1515/joc-2017-0100 .
Y. Y. Luo , 等 . Multi-wavelength fiber laser based on self-seed light amplification and wavelength-dependent gain . Opt. Commun. , 2015 . 338 336 -339 . DOI:10.1016/j.optcom.2014.10.066http://doi.org/10.1016/j.optcom.2014.10.066 .
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution