1.Jihua Laboratory, Foshan, 528200, China
2.College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
3.Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
4.State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
5.Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
6.Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, China
Meiyan Pan (panmy@jihualab.ac.cn)
Yueqiang Hu (huyq@hnu.edu.cn)
Published:31 August 2022,
Published Online:28 June 2022,
Received:21 February 2022,
Revised:03 June 2022,
Accepted:10 June 2022
Scan for full text
Pan, M. Y. et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light: Science & Applications, 11, 1686-1717 (2022).
Pan, M. Y. et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light: Science & Applications, 11, 1686-1717 (2022). DOI: 10.1038/s41377-022-00885-7.
Lightweight
miniaturized optical imaging systems are vastly anticipated in these fields of aerospace exploration
industrial vision
consumer electronics
and medical imaging. However
conventional optical techniques are intricate to downscale as refractive lenses mostly rely on phase accumulation. Metalens
composed of subwavelength nanostructures that locally control light waves
offers a disruptive path for small-scale imaging systems. Recent advances in the design and nanofabrication of dielectric metalenses have led to some high-performance practical optical systems. This review outlines the exciting developments in the aforementioned area whilst highlighting the challenges of using dielectric metalenses to replace conventional optics in miniature optical systems. After a brief introduction to the fundamental physics of dielectric metalenses
the progress and challenges in terms of the typical performances are introduced. The supplementary discussion on the common challenges hindering further development is also presented
including the limitations of the conventional design methods
difficulties in scaling up
and device integration. Furthermore
the potential approaches to address the existing challenges are also deliberated.
K. Huang , 等 . Planar diffractive lenses: fundamentals, functionalities, and applications . Adv. Mater. , 2018 . 30 1704556 DOI:10.1002/adma.201704556http://doi.org/10.1002/adma.201704556.
J. Engelberg , U. Levy . The advantages of metalenses over diffractive lenses . Nat. Commun. , 2020 . 11 1991 DOI:10.1038/s41467-020-15972-9http://doi.org/10.1038/s41467-020-15972-9.
S. J. Kim , 等 . Dielectric metalens: properties and three-dimensional imaging applications . Sensors , 2021 . 21 4584 DOI:10.3390/s21134584http://doi.org/10.3390/s21134584.
W. T. Chen , F. Capasso . Will flat optics appear in everyday life anytime soon? . Appl. Phys. Lett. , 2021 . 118 100503 DOI:10.1063/5.0039885http://doi.org/10.1063/5.0039885.
X. J. Zou , 等 . Imaging based on metalenses . PhotoniX , 2020 . 1 2 DOI:10.1186/s43074-020-00007-9http://doi.org/10.1186/s43074-020-00007-9.
M. K. Chen , 等 . Principles, functions, and applications of optical meta-lens . Adv. Optical Mater. , 2021 . 9 2001414 DOI:10.1002/adom.202001414http://doi.org/10.1002/adom.202001414.
W. T. Chen , A. Y. Zhu , F. Capasso . Flat optics with dispersion-engineered metasurfaces . Nat. Rev. Mater. , 2020 . 5 604 -620 . DOI:10.1038/s41578-020-0203-3http://doi.org/10.1038/s41578-020-0203-3.
G. Y. Lee , J. Sung , B. Lee . Metasurface optics for imaging applications . MRS Bull. , 2020 . 45 202 -209 . DOI:10.1557/mrs.2020.64http://doi.org/10.1557/mrs.2020.64.
H. S. Ee , R. Agarwal . Tunable metasurface and flat optical zoom lens on a stretchable substrate . Nano Lett. , 2016 . 16 2818 -2823 . DOI:10.1021/acs.nanolett.6b00618http://doi.org/10.1021/acs.nanolett.6b00618.
P. Genevet , 等 . Recent advances in planar optics: from plasmonic to dielectric metasurfaces . Optica , 2017 . 4 139 -152 . DOI:10.1364/OPTICA.4.000139http://doi.org/10.1364/OPTICA.4.000139.
F. Aieta , 等 . Aberrations of flat lenses and aplanatic metasurfaces . Opt. Express , 2013 . 21 31530 -31539 . DOI:10.1364/OE.21.031530http://doi.org/10.1364/OE.21.031530.
Ottevaere, H. & Thienpont, H. Optical microlenses. in Encyclopedia of Modern Optics (ed Guenther, R. D.) 21–43 (Amsterdam: Elsevier, 2005).
A. Maréchal . Mechanical integrator for studying the distribution of light in the optical image . J. Optical Soc. Am. , 1947 . 37 403 DOI:10.1364/JOSA.37.000403http://doi.org/10.1364/JOSA.37.000403.
R. X. Wang , 等 . Metalens for generating a customized vectorial focal curve . Nano Lett. , 2021 . 21 2081 -2087 . DOI:10.1021/acs.nanolett.0c04775http://doi.org/10.1021/acs.nanolett.0c04775.
X. H. Fan , 等 . Axially tailored light field by means of a dielectric metalens . Phys. Rev. Appl. , 2020 . 14 024035 DOI:10.1103/PhysRevApplied.14.024035http://doi.org/10.1103/PhysRevApplied.14.024035.
W. H. Chang , 等 . Generation of concentric space-variant linear polarized light by dielectric metalens . Nano Lett. , 2021 . 21 562 -568 . DOI:10.1021/acs.nanolett.0c04021http://doi.org/10.1021/acs.nanolett.0c04021.
T. Zhou , 等 . Spin-independent metalens for helicity–multiplexing of converged vortices and cylindrical vector beams . Opt. Lett. , 2020 . 45 5941 -5944 . DOI:10.1364/OL.404436http://doi.org/10.1364/OL.404436.
W. Wang , 等 . Polarization multiplexing and bifocal optical vortex metalens . Results Phys. , 2020 . 17 103033 DOI:10.1016/j.rinp.2020.103033http://doi.org/10.1016/j.rinp.2020.103033.
Y. F. Hu , 等 . Dielectric metasurface zone plate for the generation of focusing vortex beams . PhotoniX , 2021 . 2 10 DOI:10.1186/s43074-021-00035-zhttp://doi.org/10.1186/s43074-021-00035-z.
B. Q. Huang , 等 . Multifocal co-plane metalens based on computer-generated holography for multiple visible wavelengths . Results Phys. , 2020 . 17 103085 DOI:10.1016/j.rinp.2020.103085http://doi.org/10.1016/j.rinp.2020.103085.
J. P. Zhang , 等 . A vortex-focused beam metalens array in the visible light range based on computer-generated holography . Results Phys. , 2021 . 25 104211 DOI:10.1016/j.rinp.2021.104211http://doi.org/10.1016/j.rinp.2021.104211.
M. Decker , 等 . High-efficiency dielectric huygens' surfaces . Adv. Optical Mater. , 2015 . 3 813 -820 . DOI:10.1002/adom.201400584http://doi.org/10.1002/adom.201400584.
M. I. Shalaev , 等 . High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode . Nano Lett. , 2015 . 15 6261 -6266 . DOI:10.1021/acs.nanolett.5b02926http://doi.org/10.1021/acs.nanolett.5b02926.
L. Zhang , 等 . Ultra-thin high-efficiency mid-infrared transmissive huygens meta-optics . Nat. Commun. , 2018 . 9 1481 DOI:10.1038/s41467-018-03831-7http://doi.org/10.1038/s41467-018-03831-7.
Y. F. Yu , 等 . High-transmission dielectric metasurface with 2π phase control at visible wavelengths . Laser Photonics Rev. , 2015 . 9 412 -418 . DOI:10.1002/lpor.201500041http://doi.org/10.1002/lpor.201500041.
J. B. Yu , 等 . Dielectric super-absorbing metasurfaces via pt symmetry breaking . Optica , 2021 . 8 1290 -1295 . DOI:10.1364/OPTICA.430893http://doi.org/10.1364/OPTICA.430893.
J. Y. Tian , 等 . High-Q all-dielectric metasurface: super and suppressed optical absorption . ACS Photonics , 2020 . 7 1436 -1443 . DOI:10.1021/acsphotonics.0c00003http://doi.org/10.1021/acsphotonics.0c00003.
T. Shi , 等 . Displacement-mediated bound states in the continuum in all-dielectric superlattice metasurfaces . PhotoniX , 2021 . 2 7 DOI:10.1186/s43074-021-00029-xhttp://doi.org/10.1186/s43074-021-00029-x.
A. Arbabi , 等 . Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers . Opt. Express , 2015 . 23 33310 -33317 . DOI:10.1364/OE.23.033310http://doi.org/10.1364/OE.23.033310.
M. Anzan-Uz-Zaman , 等 . A novel approach to Fabry–Pérot-resonance-based lens and demonstrating deep-subwavelength imaging . Sci. Rep. , 2020 . 10 10769 DOI:10.1038/s41598-020-67409-4http://doi.org/10.1038/s41598-020-67409-4.
J. Li , 等 . Mechanisms of 2π phase control in dielectric metasurface and transmission enhancement effect . Opt. Express , 2019 . 27 23186 -23196 . DOI:10.1364/OE.27.023186http://doi.org/10.1364/OE.27.023186.
C. Chen , 等 . Metasurfaces with planar chiral meta-atoms for spin light manipulation . Nano Lett. , 2021 . 21 1815 -1821 . DOI:10.1021/acs.nanolett.0c04902http://doi.org/10.1021/acs.nanolett.0c04902.
M. Y. Pan , 等 . Circular-polarization-sensitive absorption in refractory metamaterials composed of molybdenum zigzag arrays . Opt. Express , 2018 . 26 17772 -17780 . DOI:10.1364/OE.26.017772http://doi.org/10.1364/OE.26.017772.
B. H. Chen , 等 . Gan metalens for pixel-level full-color routing at visible light . Nano Lett. , 2017 . 17 6345 -6352 . DOI:10.1021/acs.nanolett.7b03135http://doi.org/10.1021/acs.nanolett.7b03135.
M. Khorasaninejad , 等 . Polarization-insensitive metalenses at visible wavelengths . Nano Lett. , 2016 . 16 7229 -7234 . DOI:10.1021/acs.nanolett.6b03626http://doi.org/10.1021/acs.nanolett.6b03626.
M. Khorasaninejad , F. Capasso . Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters . Nano Lett. , 2015 . 15 6709 -6715 . DOI:10.1021/acs.nanolett.5b02524http://doi.org/10.1021/acs.nanolett.5b02524.
R. Chen , 等 . Multifunctional metasurface: coplanar embedded design for metalens and nanoprinted display . ACS Photonics , 2020 . 7 1171 -1177 . DOI:10.1021/acsphotonics.9b01795http://doi.org/10.1021/acsphotonics.9b01795.
A. Arbabi , 等 . Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission . Nat. Nanotechnol. , 2015 . 10 937 -943 . DOI:10.1038/nnano.2015.186http://doi.org/10.1038/nnano.2015.186.
S. Pancharatnam . Generalized theory of interference and its applications . Proc. Indian Acad. Sci. – Sect. A , 1956 . 44 398 -417 . DOI:10.1007/BF03046095http://doi.org/10.1007/BF03046095.
M. V. Berry . Quantal phase factors accompanying adiabatic changes . Proc. R. Soc. A: Math., Phys. Eng. Sci. , 1984 . 392 45 -57. .
M. Khorasaninejad , 等 . Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging . Science , 2016 . 352 1190 -1194 . DOI:10.1126/science.aaf6644http://doi.org/10.1126/science.aaf6644.
J. P. B. Mueller , 等 . Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization . Phys. Rev. Lett. , 2017 . 118 113901 DOI:10.1103/PhysRevLett.118.113901http://doi.org/10.1103/PhysRevLett.118.113901.
S. Q. Li , 等 . Multidimensional manipulation of photonic spin hall effect with a single-layer dielectric metasurface . Adv. Optical Mater. , 2019 . 7 1801365 DOI:10.1002/adom.201801365http://doi.org/10.1002/adom.201801365.
Y. Y. Yuan , 等 . A fully phase-modulated metasurface as an energy-controllable circular polarization router . Adv. Sci. , 2020 . 7 2001437 DOI:10.1002/advs.202001437http://doi.org/10.1002/advs.202001437.
W. T. Chen , 等 . Immersion meta-lenses at visible wavelengths for nanoscale imaging . Nano Lett. , 2017 . 17 3188 -3194 . DOI:10.1021/acs.nanolett.7b00717http://doi.org/10.1021/acs.nanolett.7b00717.
Z. B. Fan , 等 . Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging . Phys. Rev. Appl. , 2018 . 10 014005 DOI:10.1103/PhysRevApplied.10.014005http://doi.org/10.1103/PhysRevApplied.10.014005.
H. W. Liang , 等 . Ultrahigh numerical aperture metalens at visible wavelengths . Nano Lett. , 2018 . 18 4460 -4466 . DOI:10.1021/acs.nanolett.8b01570http://doi.org/10.1021/acs.nanolett.8b01570.
T. Y. Huang , 等 . A monolithic immersion metalens for imaging solid-state quantum emitters . Nat. Commun. , 2019 . 10 2392 DOI:10.1038/s41467-019-10238-5http://doi.org/10.1038/s41467-019-10238-5.
R. Paniagua-Domínguez , 等 . A metalens with a near-unity numerical aperture . Nano Lett. , 2018 . 18 2124 -2132 . DOI:10.1021/acs.nanolett.8b00368http://doi.org/10.1021/acs.nanolett.8b00368.
W. Hadibrata , 等 . Inverse design and 3D printing of a metalens on an optical fiber tip for direct laser lithography . Nano Lett. , 2021 . 21 2422 -2428 . DOI:10.1021/acs.nanolett.0c04463http://doi.org/10.1021/acs.nanolett.0c04463.
T. Chantakit , 等 . All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers . Photonics Res. , 2020 . 8 1435 -1440 . DOI:10.1364/PRJ.389200http://doi.org/10.1364/PRJ.389200.
M. Plidschun , 等 . Ultrahigh numerical aperture meta-fibre for flexible optical trapping . Light.: Sci. Appl. , 2021 . 10 57 DOI:10.1038/s41377-021-00491-zhttp://doi.org/10.1038/s41377-021-00491-z.
A. She , 等 . Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift . Sci. Adv. , 2018 . 4 eaap9957 DOI:10.1126/sciadv.aap9957http://doi.org/10.1126/sciadv.aap9957.
A. She , 等 . Large area metalenses: design, characterization, and mass manufacturing . Opt. Express , 2018 . 26 1573 -1585 . DOI:10.1364/OE.26.001573http://doi.org/10.1364/OE.26.001573.
Y. J. Wang , 等 . High-efficiency broadband achromatic metalens for near-IR biological imaging window . Nat. Commun. , 2021 . 12 5560 DOI:10.1038/s41467-021-25797-9http://doi.org/10.1038/s41467-021-25797-9.
D. Sell , 等 . Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities . Adv. Optical Mater. , 2017 . 5 1700645 DOI:10.1002/adom.201700645http://doi.org/10.1002/adom.201700645.
A. Arbabi , 等 . Increasing efficiency of high numerical aperture metasurfaces using the grating averaging technique . Sci. Rep. , 2020 . 10 7124 DOI:10.1038/s41598-020-64198-8http://doi.org/10.1038/s41598-020-64198-8.
S. J. Byrnes , 等 . Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light . Opt. Express , 2016 . 24 5110 -5124 . DOI:10.1364/OE.24.005110http://doi.org/10.1364/OE.24.005110.
A. Kalvach , Z. Szabó . Aberration-free flat lens design for a wide range of incident angles . J. Optical Soc. Am. B , 2016 . 33 A66 -A71 . DOI:10.1364/JOSAB.33.000A66http://doi.org/10.1364/JOSAB.33.000A66.
B. B. Xu , 等 . Metalens-integrated compact imaging devices for wide-field microscopy . Adv. Photonics , 2020 . 2 066004 .
Z. X. Li , 等 . Compact metalens-based integrated imaging devices for near-infrared microscopy . Opt. Express , 2021 . 29 27041 -27047 . DOI:10.1364/OE.431901http://doi.org/10.1364/OE.431901.
G. Y. Lee , 等 . Metasurface eyepiece for augmented reality . Nat. Commun. , 2018 . 9 4562 DOI:10.1038/s41467-018-07011-5http://doi.org/10.1038/s41467-018-07011-5.
A. Martins , 等 . On metalenses with arbitrarily wide field of view . ACS Photonics , 2020 . 7 2073 -2079 . DOI:10.1021/acsphotonics.0c00479http://doi.org/10.1021/acsphotonics.0c00479.
C. L. Hao , 等 . Single-layer aberration-compensated flat lens for robust wide-angle imaging . Laser Photonics Rev. , 2020 . 14 2000017 DOI:10.1002/lpor.202000017http://doi.org/10.1002/lpor.202000017.
J. Engelberg , 等 . Near-IR wide-field-of-view huygens metalens for outdoor imaging applications . Nanophotonics , 2020 . 9 361 -370 . DOI:10.1515/nanoph-2019-0177http://doi.org/10.1515/nanoph-2019-0177.
M. Y. Shalaginov , 等 . Single-element diffraction-limited fisheye metalens . Nano Lett. , 2020 . 20 7429 -7437 . DOI:10.1021/acs.nanolett.0c02783http://doi.org/10.1021/acs.nanolett.0c02783.
B. Groever , W. T. Chen , F. Capasso . Meta-lens doublet in the visible region . Nano Lett. , 2017 . 17 4902 -4907 . DOI:10.1021/acs.nanolett.7b01888http://doi.org/10.1021/acs.nanolett.7b01888.
C. Kim , S. J. Kim , B. Lee . Doublet metalens design for high numerical aperture and simultaneous correction of chromatic and monochromatic aberrations . Opt. Express , 2020 . 28 18059 -18076 . DOI:10.1364/OE.387794http://doi.org/10.1364/OE.387794.
A. Arbabi , 等 . Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations . Nat. Commun. , 2016 . 7 13682 DOI:10.1038/ncomms13682http://doi.org/10.1038/ncomms13682.
M. Faraji-Dana , 等 . Compact folded metasurface spectrometer . Nat. Commun. , 2018 . 9 4196 DOI:10.1038/s41467-018-06495-5http://doi.org/10.1038/s41467-018-06495-5.
M. Faraji-Dana , 等 . Hyperspectral imager with folded metasurface optics . ACS Photonics , 2019 . 6 2161 -2167 . DOI:10.1021/acsphotonics.9b00744http://doi.org/10.1021/acsphotonics.9b00744.
H. W. Liang , 等 . High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs . Optica , 2019 . 6 1461 -1470 . DOI:10.1364/OPTICA.6.001461http://doi.org/10.1364/OPTICA.6.001461.
C. Y. Fan , C. P. Lin , G. D. J. Su . Ultrawide-angle and high-efficiency metalens in hexagonal arrangement . Sci. Rep. , 2020 . 10 15677 DOI:10.1038/s41598-020-72668-2http://doi.org/10.1038/s41598-020-72668-2.
Q. Zhang , 等 . High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light . Adv. Optical Mater. , 2020 . 8 1901885 DOI:10.1002/adom.201901885http://doi.org/10.1002/adom.201901885.
X. G. Luo , 等 . Recent advances of wide-angle metalenses: principle, design, and applications . Nanophotonics , 2021 . 11 1 -20 . DOI:10.1515/nanoph-2021-0583http://doi.org/10.1515/nanoph-2021-0583.
M. Qiu , 等 . Angular dispersions in terahertz metasurfaces: physics and applications . Phys. Rev. Appl. , 2018 . 9 054050 DOI:10.1103/PhysRevApplied.9.054050http://doi.org/10.1103/PhysRevApplied.9.054050.
X. Y. Zhang , 等 . Controlling angular dispersions in optical metasurfaces . Light.: Sci. Appl. , 2020 . 9 76 DOI:10.1038/s41377-020-0313-0http://doi.org/10.1038/s41377-020-0313-0.
O. Reshef , 等 . An optic to replace space and its application towards ultra-thin imaging systems . Nat. Commun. , 2021 . 12 3512 DOI:10.1038/s41467-021-23358-8http://doi.org/10.1038/s41467-021-23358-8.
A. B. Chen , F. Monticone . Dielectric nonlocal metasurfaces for fully solid-state ultrathin optical systems . ACS Photonics , 2021 . 8 1439 -1447 . DOI:10.1021/acsphotonics.1c00189http://doi.org/10.1021/acsphotonics.1c00189.
Z. J. Shi , 等 . Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion . Sci. Adv. , 2020 . 6 eaba3367 DOI:10.1126/sciadv.aba3367http://doi.org/10.1126/sciadv.aba3367.
E. Arbabi , 等 . Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules . Optica , 2016 . 3 628 -633 . DOI:10.1364/OPTICA.3.000628http://doi.org/10.1364/OPTICA.3.000628.
O. Avayu , 等 . Composite functional metasurfaces for multispectral achromatic optics . Nat. Commun. , 2017 . 8 14992 DOI:10.1038/ncomms14992http://doi.org/10.1038/ncomms14992.
F. Tang , 等 . Dielectric metalenses at long-wave infrared wavelengths: multiplexing and spectroscope . Results Phys. , 2020 . 18 103215 DOI:10.1016/j.rinp.2020.103215http://doi.org/10.1016/j.rinp.2020.103215.
E. Arbabi , 等 . Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces . Optica , 2017 . 4 625 -632 . DOI:10.1364/OPTICA.4.000625http://doi.org/10.1364/OPTICA.4.000625.
W. T. Chen , 等 . A broadband achromatic metalens for focusing and imaging in the visible . Nat. Nanotechnol. , 2018 . 13 220 -226 . DOI:10.1038/s41565-017-0034-6http://doi.org/10.1038/s41565-017-0034-6.
C. Chen , 等 . Spectral tomographic imaging with aplanatic metalens . Light.: Sci. Appl. , 2019 . 8 99 DOI:10.1038/s41377-019-0208-0http://doi.org/10.1038/s41377-019-0208-0.
H. Pahlevaninezhad , 等 . Nano-optic endoscope for high-resolution optical coherence tomography in vivo . Nat. Photonics , 2018 . 12 540 -547 . DOI:10.1038/s41566-018-0224-2http://doi.org/10.1038/s41566-018-0224-2.
S. M. Wang , 等 . A broadband achromatic metalens in the visible . Nat. Nanotechnol. , 2018 . 13 227 -232 . DOI:10.1038/s41565-017-0052-4http://doi.org/10.1038/s41565-017-0052-4.
Z. Y. Li , 等 . Meta-optics achieves RGB-achromatic focusing for virtual reality . Sci. Adv. , 2021 . 7 eabe4458 DOI:10.1126/sciadv.abe4458http://doi.org/10.1126/sciadv.abe4458.
S. Shrestha , 等 . Broadband achromatic dielectric metalenses . Light.: Sci. Appl. , 2018 . 7 85 DOI:10.1038/s41377-018-0078-xhttp://doi.org/10.1038/s41377-018-0078-x.
X. Feng , 等 . Optical multiparameter detection system based on a broadband achromatic metalens array . Adv. Optical Mater. , 2021 . 9 2100772 DOI:10.1002/adom.202100772http://doi.org/10.1002/adom.202100772.
H. P. Zhou , 等 . Broadband achromatic metalens in the midinfrared range . Phys. Rev. Appl. , 2019 . 11 024066 DOI:10.1103/PhysRevApplied.11.024066http://doi.org/10.1103/PhysRevApplied.11.024066.
K. Ou , 等 . Broadband achromatic metalens in mid-wavelength infrared . Laser Photonics Rev. , 2021 . 15 2100020 DOI:10.1002/lpor.202100020http://doi.org/10.1002/lpor.202100020.
X. S. Li , 等 . Transmissive mid-infrared achromatic bifocal metalens with polarization sensitivity . Opt. Express , 2021 . 29 17173 -17182 . DOI:10.1364/OE.424887http://doi.org/10.1364/OE.424887.
S. Y. Zhang , 等 . Solid-immersion metalenses for infrared focal plane arrays . Appl. Phys. Lett. , 2018 . 113 111104 DOI:10.1063/1.5040395http://doi.org/10.1063/1.5040395.
N. T. Song , 等 . Broadband achromatic metasurfaces for longwave infrared applications . Nanomaterials , 2021 . 11 2760 DOI:10.3390/nano11102760http://doi.org/10.3390/nano11102760.
M. Khorasaninejad , 等 . Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion . Nano Lett. , 2017 . 17 1819 -1824 . DOI:10.1021/acs.nanolett.6b05137http://doi.org/10.1021/acs.nanolett.6b05137.
Hu, Y. Q. et al. Ultra-broadband dispersion-manipulated dielectric metalenses by nonlinear dispersive phase compensation. Preprint at https://arxiv.org/abs/2112.14127https://arxiv.org/abs/2112.14127 (2021).
Z. B. Fan , 等 . A broadband achromatic metalens array for integral imaging in the visible . Light.: Sci. Appl. , 2019 . 8 67 DOI:10.1038/s41377-019-0178-2http://doi.org/10.1038/s41377-019-0178-2.
R. J. Lin , 等 . Achromatic metalens array for full-colour light-field imaging . Nat. Nanotechnol. , 2019 . 14 227 -231 . DOI:10.1038/s41565-018-0347-0http://doi.org/10.1038/s41565-018-0347-0.
F. Presutti , F. Monticone . Focusing on bandwidth: achromatic metalens limits . Optica , 2020 . 7 624 -631 . DOI:10.1364/OPTICA.389404http://doi.org/10.1364/OPTICA.389404.
S. A. Mann , D. L. Sounas , A. Alù . Nonreciprocal cavities and the time–bandwidth limit . Optica , 2019 . 6 104 -110 . DOI:10.1364/OPTICA.6.000104http://doi.org/10.1364/OPTICA.6.000104.
F. Zhang , 等 . Metasurfaces for broadband dispersion engineering through custom-tailored multi-resonances . Appl. Phys. Express , 2018 . 11 082004 DOI:10.7567/APEX.11.082004http://doi.org/10.7567/APEX.11.082004.
S. M. Wang , 等 . Broadband achromatic optical metasurface devices . Nat. Commun. , 2017 . 8 187 DOI:10.1038/s41467-017-00166-7http://doi.org/10.1038/s41467-017-00166-7.
F. Monticone , A. Alù . Invisibility exposed: physical bounds on passive cloaking . Optica , 2016 . 3 718 -724 . DOI:10.1364/OPTICA.3.000718http://doi.org/10.1364/OPTICA.3.000718.
R. S. Tucker , P. C. Ku , C. J. Chang-Hasnain . Slow-light optical buffers: capabilities and fundamental limitations . J. Lightwave Technol. , 2005 . 23 4046 -4066 . DOI:10.1109/JLT.2005.853125http://doi.org/10.1109/JLT.2005.853125.
D. A. B. Miller . Fundamental limit to linear one-dimensional slow light structures . Phys. Rev. Lett. , 2007 . 99 203903 DOI:10.1103/PhysRevLett.99.203903http://doi.org/10.1103/PhysRevLett.99.203903.
X. Yin , 等 . Hyperbolic metamaterial devices for wavefront manipulation . Laser Photonics Rev. , 2019 . 13 1800081 DOI:10.1002/lpor.201800081http://doi.org/10.1002/lpor.201800081.
F. Aieta , 等 . Multiwavelength achromatic metasurfaces by dispersive phase compensation . Science , 2015 . 347 1342 -1345 . DOI:10.1126/science.aaa2494http://doi.org/10.1126/science.aaa2494.
F. Balli , 等 . A hybrid achromatic metalens . Nat. Commun. , 2020 . 11 3892 DOI:10.1038/s41467-020-17646-yhttp://doi.org/10.1038/s41467-020-17646-y.
M. M. Li , 等 . Dual-layer achromatic metalens design with an effective abbe number . Opt. Express , 2020 . 28 26041 -26055 . DOI:10.1364/OE.402478http://doi.org/10.1364/OE.402478.
F. Balli , 等 . An ultrabroadband 3D achromatic metalens . Nanophotonics , 2021 . 10 1259 -1264 . DOI:10.1515/nanoph-2020-0550http://doi.org/10.1515/nanoph-2020-0550.
M. Mansouree , 等 . Multifunctional 2.5D metastructures enabled by adjoint optimization . Optica , 2020 . 7 77 -84 . DOI:10.1364/OPTICA.374787http://doi.org/10.1364/OPTICA.374787.
X. M. Dai , 等 . Holographic super-resolution metalens for achromatic sub-wavelength focusing . ACS Photonics , 2021 . 8 2294 -2303 . DOI:10.1021/acsphotonics.1c00411http://doi.org/10.1021/acsphotonics.1c00411.
Y. Q. Hu , 等 . All-dielectric metasurfaces for polarization manipulation: principles and emerging applications . Nanophotonics , 2020 . 9 3755 -3780 . DOI:10.1515/nanoph-2020-0220http://doi.org/10.1515/nanoph-2020-0220.
M. Khorasaninejad , F. Capasso . Metalenses: versatile multifunctional photonic components . Science , 2017 . 358 eaam8100 DOI:10.1126/science.aam8100http://doi.org/10.1126/science.aam8100.
Sattar, S. et al. Review of spectral and polarization imaging systems. Proceedings of SPIE 11351, Unconventional Optical Imaging II. SPIE, 113511Q (SPIE, 2020).
V. Gruev , R. Perkins , T. York . CCD polarization imaging sensor with aluminum nanowire optical filters . Opt. Express , 2010 . 18 19087 -19094 . DOI:10.1364/OE.18.019087http://doi.org/10.1364/OE.18.019087.
N. A. Rubin , 等 . Matrix fourier optics enables a compact full-stokes polarization camera . Science , 2019 . 365 eaax1839 DOI:10.1126/science.aax1839http://doi.org/10.1126/science.aax1839.
F. Zhao , 等 . Metalens-assisted system for underwater imaging . Laser Photonics Rev. , 2021 . 15 2100097 DOI:10.1002/lpor.202100097http://doi.org/10.1002/lpor.202100097.
X. Q. Zhang , 等 . Direct polarization measurement using a multiplexed Pancharatnam-Berry metahologram . Optica , 2019 . 6 1190 -1198 . DOI:10.1364/OPTICA.6.001190http://doi.org/10.1364/OPTICA.6.001190.
M. Khorasaninejad , 等 . Multispectral chiral imaging with a metalens . Nano Lett. , 2016 . 16 4595 -4600 . DOI:10.1021/acs.nanolett.6b01897http://doi.org/10.1021/acs.nanolett.6b01897.
L. L. Tang , 等 . Spin-dependent dual-wavelength multiplexing metalens . Opt. Lett. , 2020 . 45 5258 -5261 . DOI:10.1364/OL.401782http://doi.org/10.1364/OL.401782.
Z. Y. Yang , 等 . Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling . Nat. Commun. , 2018 . 9 4607 DOI:10.1038/s41467-018-07056-6http://doi.org/10.1038/s41467-018-07056-6.
E. Arbabi , 等 . Full-stokes imaging polarimetry using dielectric metasurfaces . ACS Photonics , 2018 . 5 3132 -3140 . DOI:10.1021/acsphotonics.8b00362http://doi.org/10.1021/acsphotonics.8b00362.
C. Chen , 等 . Parallel polarization illumination with a multifocal axicon metalens for improved polarization imaging . Nano Lett. , 2020 . 20 5428 -5434 . DOI:10.1021/acs.nanolett.0c01877http://doi.org/10.1021/acs.nanolett.0c01877.
C. Yan , 等 . Midinfrared real-time polarization imaging with all-dielectric metasurfaces . Appl. Phys. Lett. , 2019 . 114 161904 DOI:10.1063/1.5091475http://doi.org/10.1063/1.5091475.
Y. X. Wei , 等 . Compact optical polarization-insensitive zoom metalens doublet . Adv. Optical Mater. , 2020 . 8 2000142 DOI:10.1002/adom.202000142http://doi.org/10.1002/adom.202000142.
Z. Y. Han , 等 . MEMS-actuated metasurface alvarez lens . Microsyst. Nanoengineering , 2020 . 6 79 DOI:10.1038/s41378-020-00190-6http://doi.org/10.1038/s41378-020-00190-6.
Y. Luo , 等 . Varifocal metalens for optical sectioning fluorescence microscopy . Nano Lett. , 2021 . 21 5133 -5142 . DOI:10.1021/acs.nanolett.1c01114http://doi.org/10.1021/acs.nanolett.1c01114.
S. Colburn , A. Zhan , A. Majumdar . Varifocal zoom imaging with large area focal length adjustable metalenses . Optica , 2018 . 5 825 -831 . DOI:10.1364/OPTICA.5.000825http://doi.org/10.1364/OPTICA.5.000825.
K. Iwami , 等 . Demonstration of focal length tuning by rotational varifocal moiré metalens in an ir-A wavelength . Opt. Express , 2020 . 28 35602 -35614 . DOI:10.1364/OE.411054http://doi.org/10.1364/OE.411054.
E. Arbabi , 等 . MEMS-tunable dielectric metasurface lens . Nat. Commun. , 2018 . 9 812 DOI:10.1038/s41467-018-03155-6http://doi.org/10.1038/s41467-018-03155-6.
S. M. Kamali , 等 . Highly tunable elastic dielectric metasurface lenses . Laser Phontonics Rev. , 2016 . 10 1002 -1008 . DOI:10.1002/lpor.201600144http://doi.org/10.1002/lpor.201600144.
S. B. Wei , 等 . A varifocal graphene metalens for broadband zoom imaging covering the entire visible region . ACS Nano , 2021 . 15 4769 -4776 . DOI:10.1021/acsnano.0c09395http://doi.org/10.1021/acsnano.0c09395.
R. Fu , 等 . Reconfigurable step-zoom metalens without optical and mechanical compensations . Opt. Express , 2019 . 27 12221 -12230 . DOI:10.1364/OE.27.012221http://doi.org/10.1364/OE.27.012221.
R. H. Lin , X. H. Li . Multifocal metalens based on multilayer Pancharatnam-Berry phase elements architecture . Opt. Lett. , 2019 . 44 2819 -2822 . DOI:10.1364/OL.44.002819http://doi.org/10.1364/OL.44.002819.
S. N. Tian , 等 . Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency . Opt. Express , 2019 . 27 680 -688 . DOI:10.1364/OE.27.000680http://doi.org/10.1364/OE.27.000680.
S. Gao , 等 . Twofold polarization-selective all-dielectric trifoci metalens for linearly polarized visible light . Adv. Optical Mater. , 2019 . 7 1900883 DOI:10.1002/adom.201900883http://doi.org/10.1002/adom.201900883.
M. D. Aiello , 等 . Achromatic varifocal metalens for the visible spectrum . ACS Photonics , 2019 . 6 2432 -2440 . DOI:10.1021/acsphotonics.9b00523http://doi.org/10.1021/acsphotonics.9b00523.
Z. Yao , Y. H. Chen . Focusing and imaging of a polarization-controlled bifocal metalens . Opt. Express , 2021 . 29 3904 -3914 . DOI:10.1364/OE.412403http://doi.org/10.1364/OE.412403.
L. Li , 等 . Broadband polarization-switchable multi-focal noninterleaved metalenses in the visible . Laser Photonics Rev. , 2021 . 15 2100198 DOI:10.1002/lpor.202100198http://doi.org/10.1002/lpor.202100198.
X. Z. Chen , 等 . Longitudinal multifoci metalens for circularly polarized light . Adv. Optical Mater. , 2015 . 3 1201 -1206 . DOI:10.1002/adom.201500110http://doi.org/10.1002/adom.201500110.
Abdollahramezani, S. et al. Reconfigurable multifunctional metasurfaces employing hybrid phase-change plasmonic architecture. Preprint at https://arxiv.org/abs/1809.08907https://arxiv.org/abs/1809.08907 (2018).
X. H. Yin , 等 . Beam switching and bifocal zoom lensing using active plasmonic metasurfaces . Light.: Sci. Appl. , 2017 . 6 e17016 DOI:10.1038/lsa.2017.16http://doi.org/10.1038/lsa.2017.16.
M. Y. Shalaginov , 等 . Reconfigurable all-dielectric metalens with diffraction-limited performance . Nat. Commun. , 2021 . 12 1225 DOI:10.1038/s41467-021-21440-9http://doi.org/10.1038/s41467-021-21440-9.
A. Lininger , 等 . Optical properties of metasurfaces infiltrated with liquid crystals . Proc. Natl Acad. Sci. USA , 2020 . 117 20390 -20396 . DOI:10.1073/pnas.2006336117http://doi.org/10.1073/pnas.2006336117.
Y. Q. Hu , 等 . Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region . Nano Lett. , 2021 . 21 4554 -4562 . DOI:10.1021/acs.nanolett.1c00104http://doi.org/10.1021/acs.nanolett.1c00104.
S. H. Zhou , 等 . Liquid crystal integrated metalens with dynamic focusing property . Opt. Lett. , 2020 . 45 4324 -4327 . DOI:10.1364/OL.398601http://doi.org/10.1364/OL.398601.
C. Y. Fan , 等 . Electrically modulated varifocal metalens combined with twisted nematic liquid crystals . Opt. Express , 2020 . 28 10609 -10617 . DOI:10.1364/OE.386563http://doi.org/10.1364/OE.386563.
T. Badloe , 等 . Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths . Adv. Sci. , 2021 . 8 2102646 DOI:10.1002/advs.202102646http://doi.org/10.1002/advs.202102646.
E. Klopfer , 等 . Dynamic focusing with high-quality-factor metalenses . Nano Lett. , 2020 . 20 5127 -5132 . DOI:10.1021/acs.nanolett.0c01359http://doi.org/10.1021/acs.nanolett.0c01359.
P. Berto , 等 . Tunable and free-form planar optics . Nat. Photonics , 2019 . 13 649 -656 . DOI:10.1038/s41566-019-0486-3http://doi.org/10.1038/s41566-019-0486-3.
A. Afridi , 等 . Electrically driven varifocal silicon metalens . ACS Photonics , 2018 . 5 4497 -4503 . DOI:10.1021/acsphotonics.8b00948http://doi.org/10.1021/acsphotonics.8b00948.
J. T. Hu , 等 . Lattice-resonance metalenses for fully reconfigurable imaging . ACS Nano , 2019 . 13 4613 -4620 . DOI:10.1021/acsnano.9b00651http://doi.org/10.1021/acsnano.9b00651.
M. Y. Shalaginov , 等 . Design for quality: reconfigurable flat optics based on active metasurfaces . Nanophotonics , 2020 . 9 3505 -3534 . DOI:10.1515/nanoph-2020-0033http://doi.org/10.1515/nanoph-2020-0033.
Z. Q. Xu , 等 . Spatially resolved dynamically reconfigurable multilevel control of thermal emission . Laser Photonics Rev. , 2020 . 14 1900162 DOI:10.1002/lpor.201900162http://doi.org/10.1002/lpor.201900162.
M. Y. Pan , 等 . Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures . Nano Energy , 2020 . 69 104449 DOI:10.1016/j.nanoen.2020.104449http://doi.org/10.1016/j.nanoen.2020.104449.
Y. F. Wang , 等 . Electrical tuning of phase-change antennas and metasurfaces . Nat. Nanotechnol. , 2021 . 16 667 -672 . DOI:10.1038/s41565-021-00882-8http://doi.org/10.1038/s41565-021-00882-8.
Z. Q. Xu , 等 . Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting . Nano Lett. , 2021 . 21 5269 -5276 . DOI:10.1021/acs.nanolett.1c01396http://doi.org/10.1021/acs.nanolett.1c01396.
W. W. Liu , 等 . Aberration-corrected three-dimensional positioning with a single-shot metalens array . Optica , 2020 . 7 1706 -1713 . DOI:10.1364/OPTICA.406039http://doi.org/10.1364/OPTICA.406039.
A. L. Holsteen , 等 . A light-field metasurface for high-resolution single-particle tracking . Nano Lett. , 2019 . 19 2267 -2271 . DOI:10.1021/acs.nanolett.8b04673http://doi.org/10.1021/acs.nanolett.8b04673.
Q. Guo , 等 . Compact single-shot metalens depth sensors inspired by eyes of jumping spiders . Proc. Natl Acad. Sci. USA , 2019 . 116 22959 -22965 . DOI:10.1073/pnas.1912154116http://doi.org/10.1073/pnas.1912154116.
M. K. Park , 等 . Virtual-moving metalens array enabling light-field imaging with enhanced resolution . Adv. Optical Mater. , 2020 . 8 2000820 DOI:10.1002/adom.202000820http://doi.org/10.1002/adom.202000820.
C. Q. Jin , 等 . Dielectric metasurfaces for distance measurements and three-dimensional imaging . Adv. Photonics , 2019 . 1 036001 .
S. Colburn , A. Majumdar . Metasurface generation of paired accelerating and rotating optical beams for passive ranging and scene reconstruction . ACS Photonics , 2020 . 7 1529 -1536 . DOI:10.1021/acsphotonics.0c00354http://doi.org/10.1021/acsphotonics.0c00354.
X. Y. Li , 等 . Graphene metalens for particle nanotracking . Photonics Res. , 2020 . 8 1316 -1322 . DOI:10.1364/PRJ.397262http://doi.org/10.1364/PRJ.397262.
H. Q. Zhou , 等 . All-dielectric bifocal isotropic metalens for a single-shot hologram generation device . Opt. Express , 2020 . 28 21549 -21559 . DOI:10.1364/OE.396372http://doi.org/10.1364/OE.396372.
S. Abdollahramezani , O. Hemmatyar , A. Adibi . Meta-optics for spatial optical analog computing . Nanophotonics , 2020 . 9 4075 -4095 . DOI:10.1515/nanoph-2020-0285http://doi.org/10.1515/nanoph-2020-0285.
H. Kwon , 等 . Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces . Nat. Photonics , 2020 . 14 109 -114 . DOI:10.1038/s41566-019-0536-xhttp://doi.org/10.1038/s41566-019-0536-x.
M. X. Zhao , 等 . Phase characterisation of metalenses . Light.: Sci. Appl. , 2021 . 10 52 DOI:10.1038/s41377-021-00492-yhttp://doi.org/10.1038/s41377-021-00492-y.
M. M. R. Elsawy , 等 . Multiobjective statistical learning optimization of RGB metalens . ACS Photonics , 2021 . 8 2498 -2508 . DOI:10.1021/acsphotonics.1c00753http://doi.org/10.1021/acsphotonics.1c00753.
N. Wang , 等 . Intelligent designs in nanophotonics: from optimization towards inverse creation . PhotoniX , 2021 . 2 22 DOI:10.1186/s43074-021-00044-yhttp://doi.org/10.1186/s43074-021-00044-y.
S. H. Chen , 等 . Multi-objective thermo-economic optimization of Collins cycle . Energy , 2022 . 239 122269 DOI:10.1016/j.energy.2021.122269http://doi.org/10.1016/j.energy.2021.122269.
L. Jiang , 等 . Neural network enabled metasurface design for phase manipulation . Opt. Express , 2021 . 29 2521 -2528 . DOI:10.1364/OE.413079http://doi.org/10.1364/OE.413079.
S. S. An , 等 . Deep learning modeling approach for metasurfaces with high degrees of freedom . Opt. Express , 2020 . 28 31932 -31942 . DOI:10.1364/OE.401960http://doi.org/10.1364/OE.401960.
Y. R. Qu , 等 . Migrating knowledge between physical scenarios based on artificial neural networks . ACS Photonics , 2019 . 6 1168 -1174 . DOI:10.1021/acsphotonics.8b01526http://doi.org/10.1021/acsphotonics.8b01526.
S. S. An , 等 . A deep learning approach for objective-driven all-dielectric metasurface design . ACS Photonics , 2019 . 6 3196 -3207 . DOI:10.1021/acsphotonics.9b00966http://doi.org/10.1021/acsphotonics.9b00966.
F. L. Wang , 等 . Visible achromatic metalens design based on artificial neural network . Adv. Optical Mater. , 2022 . 10 2101842 DOI:10.1002/adom.202101842http://doi.org/10.1002/adom.202101842.
S. So , 等 . Deep learning enabled inverse design in nanophotonics . Nanophotonics , 2020 . 9 1041 -1057 . DOI:10.1515/nanoph-2019-0474http://doi.org/10.1515/nanoph-2019-0474.
E. Tseng , 等 . Neural nano-optics for high-quality thin lens imaging . Nat. Commun. , 2021 . 12 6493 DOI:10.1038/s41467-021-26443-0http://doi.org/10.1038/s41467-021-26443-0.
C. Saigre-Tardif , 等 . Intelligent meta-imagers: from compressed to learned sensing . Appl. Phys. Rev. , 2022 . 9 011314 DOI:10.1063/5.0076022http://doi.org/10.1063/5.0076022.
del Hougne, P. From compressed sensing to learned sensing with metasurface imagers. Proceedings of SPIE 11745, Passive and Active Millimeter-Wave Imaging XXIV. (SPIE, 2021).
P. del Hougne , 等 . Learned integrated sensing pipeline: reconfigurable metasurface transceivers as trainable physical layer in an artificial neural network . Adv. Sci. , 2020 . 7 1901913 DOI:10.1002/advs.201901913http://doi.org/10.1002/advs.201901913.
H. Y. Li , 等 . Intelligent electromagnetic sensing with learnable data acquisition and processing . Patterns , 2020 . 1 100006 DOI:10.1016/j.patter.2020.100006http://doi.org/10.1016/j.patter.2020.100006.
H. Chung , O. D. Miller . High-NA achromatic metalenses by inverse design . Opt. Express , 2020 . 28 6945 -6965 . DOI:10.1364/OE.385440http://doi.org/10.1364/OE.385440.
T. Phan , 等 . High-efficiency, large-area, topology-optimized metasurfaces . Light.: Sci. Appl. , 2019 . 8 48 DOI:10.1038/s41377-019-0159-5http://doi.org/10.1038/s41377-019-0159-5.
Z. Lin , 等 . Computational inverse design for ultra-compact single-piece metalenses free of chromatic and angular aberration . Appl. Phys. Lett. , 2021 . 118 041104 DOI:10.1063/5.0035419http://doi.org/10.1063/5.0035419.
J. Park , 等 . Free-form optimization of nanophotonic devices: from classical methods to deep learning . Nanophotonics , 2022 . 11 1809 -1845 . DOI:10.1515/nanoph-2021-0713http://doi.org/10.1515/nanoph-2021-0713.
J. A. Fan . Freeform metasurface design based on topology optimization . MRS Bull. , 2020 . 45 196 -201 . DOI:10.1557/mrs.2020.62http://doi.org/10.1557/mrs.2020.62.
M. Zhou , 等 . Inverse design of metasurfaces based on coupled-mode theory and adjoint optimization . ACS Photonics , 2021 . 8 2265 -2273 . DOI:10.1021/acsphotonics.1c00100http://doi.org/10.1021/acsphotonics.1c00100.
J. Q. Jiang , 等 . Free-form diffractive metagrating design based on generative adversarial networks . ACS Nano , 2019 . 13 8872 -8878 . DOI:10.1021/acsnano.9b02371http://doi.org/10.1021/acsnano.9b02371.
J. Q. Jiang , J. A. Fan . Global optimization of dielectric metasurfaces using a physics-driven neural network . Nano Lett. , 2019 . 19 5366 -5372 . DOI:10.1021/acs.nanolett.9b01857http://doi.org/10.1021/acs.nanolett.9b01857.
C. Wang , 等 . Metalens eyepiece for 3D holographic near-eye display . Nanomaterials , 2021 . 11 1920 DOI:10.3390/nano11081920http://doi.org/10.3390/nano11081920.
D. K. Nikolov , 等 . Metaform optics: bridging nanophotonics and freeform optics . Sci. Adv. , 2021 . 7 eabe5112 DOI:10.1126/sciadv.abe5112http://doi.org/10.1126/sciadv.abe5112.
P. Su , 等 . Large-area optical metasurface fabrication using nanostencil lithography . Opt. Lett. , 2021 . 46 2324 -2327 . DOI:10.1364/OL.424535http://doi.org/10.1364/OL.424535.
Y. Zhou , 等 . Flat optics for image differentiation . Nat. Photonics , 2020 . 14 316 -323 . DOI:10.1038/s41566-020-0591-3http://doi.org/10.1038/s41566-020-0591-3.
S. W. D. Lim , M. L. Meretska , F. Capasso . A high aspect ratio inverse-designed holey metalens . Nano Lett. , 2021 . 21 8642 -8649 . DOI:10.1021/acs.nanolett.1c02612http://doi.org/10.1021/acs.nanolett.1c02612.
D. Coppersmith , S. Winograd . Matrix multiplication via arithmetic progressions . J. Symb. Comput. , 1990 . 9 251 -280 . DOI:10.1016/S0747-7171(08)80013-2http://doi.org/10.1016/S0747-7171(08)80013-2.
T. W. Hughes , 等 . A perspective on the pathway toward full wave simulation of large area metalenses . Appl. Phys. Lett. , 2021 . 119 150502 DOI:10.1063/5.0071245http://doi.org/10.1063/5.0071245.
Y. Q. Chen , 等 . Sub-10 nm fabrication: methods and applications . Int. J. Extrem. Manuf. , 2021 . 3 032002 DOI:10.1088/2631-7990/ac087chttp://doi.org/10.1088/2631-7990/ac087c.
M. Decker , 等 . Imaging performance of polarization-insensitive metalenses . ACS Photonics , 2019 . 6 1493 -1499 . DOI:10.1021/acsphotonics.9b00221http://doi.org/10.1021/acsphotonics.9b00221.
J. Geng , 等 . Controllable generation of large-scale highly regular gratings on si films . Light.: Adv. Manuf. , 2021 . 2 274 -282. .
J. S. Park , 等 . All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography . Nano Lett. , 2019 . 19 8673 -8682 . DOI:10.1021/acs.nanolett.9b03333http://doi.org/10.1021/acs.nanolett.9b03333.
T. Roy , 等 . Dynamic metasurface lens based on mems technology . APL Photonics , 2018 . 3 021302 DOI:10.1063/1.5018865http://doi.org/10.1063/1.5018865.
S. Y. Zhang , 等 . High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays . Opt. Express , 2016 . 24 18024 -18034 . DOI:10.1364/OE.24.018024http://doi.org/10.1364/OE.24.018024.
T. Hu , 等 . Cmos-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging . Nanophotonics , 2020 . 9 823 -830 . DOI:10.1515/nanoph-2019-0470http://doi.org/10.1515/nanoph-2019-0470.
Zhong, Q. Z. et al. Large-area metalens directly patterned on a 12-inch glass wafer using immersion lithography for mass production. Proceedings of 2020 Optical Fiber Communications Conference and Exhibition. (San Diego, IEEE, 2020).
C. A. Dirdal , 等 . Towards high-throughput large-area metalens fabrication using uv-nanoimprint lithography and bosch deep reactive ion etching . Opt. Express , 2020 . 28 15542 -15561 . DOI:10.1364/OE.393328http://doi.org/10.1364/OE.393328.
G. Yoon , 等 . Printable nanocomposite metalens for high-contrast near-infrared imaging . ACS Nano , 2021 . 15 698 -706 . DOI:10.1021/acsnano.0c06968http://doi.org/10.1021/acsnano.0c06968.
V. J. Einck , 等 . Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms . ACS Photonics , 2021 . 8 2400 -2409 . DOI:10.1021/acsphotonics.1c00609http://doi.org/10.1021/acsphotonics.1c00609.
N. Pourdavoud , 等 . Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites . Adv. Mater. , 2017 . 29 1605003 DOI:10.1002/adma.201605003http://doi.org/10.1002/adma.201605003.
S. Banerji , 等 . Ultra-thin near infrared camera enabled by a flat multi-level diffractive lens . Opt. Lett. , 2019 . 44 5450 -5452 . DOI:10.1364/OL.44.005450http://doi.org/10.1364/OL.44.005450.
P. Dannberg , 等 . Wafer-level hybrid integration of complex micro-optical modules . Micromachines , 2014 . 5 325 -340 . DOI:10.3390/mi5020325http://doi.org/10.3390/mi5020325.
Y. Q. Hu , 等 . 3D-integrated metasurfaces for full-colour holography . Light.: Sci. Appl. , 2019 . 8 86 DOI:10.1038/s41377-019-0198-yhttp://doi.org/10.1038/s41377-019-0198-y.
X. H. Luo , 等 . Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible . Light.: Sci. Appl. , 2022 . 11 158 DOI:10.1038/s41377-022-00844-2http://doi.org/10.1038/s41377-022-00844-2.
T. Cao , 等 . Wideband mid-infrared thermal emitter based on stacked nanocavity metasurfaces . Int. J. Extrem. Manuf. , 2022 . 4 015402 DOI:10.1088/2631-7990/ac3bb1http://doi.org/10.1088/2631-7990/ac3bb1.
X. H. Luo , 等 . Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption . Adv. Optical Mater. , 2020 . 8 1902020 DOI:10.1002/adom.201902020http://doi.org/10.1002/adom.201902020.
E. Mikheeva , 等 . CMOS-compatible all-dielectric metalens for improving pixel photodetector arrays . APL Photonics , 2020 . 5 116105 DOI:10.1063/5.0022162http://doi.org/10.1063/5.0022162.
N. X. Li , 等 . Large-area pixelated metasurface beam deflector on a 12-inch glass wafer for random point generation . Nanophotonics , 2019 . 8 1855 -1861 . DOI:10.1515/nanoph-2019-0208http://doi.org/10.1515/nanoph-2019-0208.
Y. Y. Xie , 等 . Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions . Nat. Nanotechnol. , 2020 . 15 125 -130 . DOI:10.1038/s41565-019-0611-yhttp://doi.org/10.1038/s41565-019-0611-y.
E. Goi , 等 . Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chip . Light.: Sci. Appl. , 2021 . 10 40 DOI:10.1038/s41377-021-00483-zhttp://doi.org/10.1038/s41377-021-00483-z.
M. Miyata , 等 . Full-color-sorting metalenses for high-sensitivity image sensors . Optica , 2021 . 8 1596 -1604 . DOI:10.1364/OPTICA.444255http://doi.org/10.1364/OPTICA.444255.
B. Groever , 等 . Substrate aberration and correction for meta-lens imaging: an analytical approach . Appl. Opt. , 2018 . 57 2973 -2980 . DOI:10.1364/AO.57.002973http://doi.org/10.1364/AO.57.002973.
Y. T. Liu , 等 . Research progress of aberration analysis and imaging technology based on metalens . Chin. Opt. , 2021 . 14 831 -850 . DOI:10.37188/CO.2021-0014http://doi.org/10.37188/CO.2021-0014.
C. Guo , H. W. Wang , S. H. Fan . Squeeze free space with nonlocal flat optics . Optica , 2020 . 7 1133 -1138 . DOI:10.1364/OPTICA.392978http://doi.org/10.1364/OPTICA.392978.
D. Andrén , 等 . Large-scale metasurfaces made by an exposed resist . ACS Photonics , 2020 . 7 885 -892 . DOI:10.1021/acsphotonics.9b01809http://doi.org/10.1021/acsphotonics.9b01809.
Q. B. Fan , 等 . A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging . Appl. Phys. Lett. , 2018 . 113 201104 DOI:10.1063/1.5050562http://doi.org/10.1063/1.5050562.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution