1.Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore 639798, Singapore
2.Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, 200092 Shanghai, China
3.School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054 Chengdu, China
4.School of Electronics and Communication Engineering, Sun Yat-Sen University, 518100 Shenzhen, Guangdong, China
5.Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
6.Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
7.National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
Yuzhi Shi (yzshi@tongji.edu.cn)
Muhammad Faeyz Karim (faeyz@ntu.edu.sg)
Hong Cai (caih@ime.a-star.edu.sg)
Leong Chuan Kwek (kwekleongchuan@nus.edu.sg)
Ai Qun Liu (eaqliu@ntu.edu.sg)
Published:31 August 2023,
Published Online:14 July 2023,
Received:07 August 2022,
Revised:27 April 2023,
Accepted:28 April 2023
Scan QR Code
Luo, W. et al. Recent progress in quantum photonic chips for quantum communication and internet. Light: Science & Applications, 12, 1544-1565 (2023).
Luo, W. et al. Recent progress in quantum photonic chips for quantum communication and internet. Light: Science & Applications, 12, 1544-1565 (2023). DOI: 10.1038/s41377-023-01173-8.
Recent years have witnessed significant progress in quantum communication and quantum internet with the emerging quantum photonic chips
whose characteristics of scalability
stability
and low cost
flourish and open up new possibilities in miniaturized footprints. Here
we provide an overview of the advances in quantum photonic chips for quantum communication
beginning with a summary of the prevalent photonic integrated fabrication platforms and key components for integrated quantum communication systems. We then discuss a range of quantum communication applications
such as quantum key distribution and quantum teleportation. Finally
the review culminates with a perspective on challenges towards high-performance chip-based quantum communication
as well as a glimpse into future opportunities for integrated quantum networks.
Bennett, C. H.&Brassard, G. Quantum cryptography: public key distribution and coin tossing.Proc. International Conference on Computers, Systems & Signal Processing175–179 (IEEE, Bangalore, 1984).
Bennett, C. H. et al. Experimental quantum cryptography.J. Cryptol.5, 3–28 (1992)..
Shor, P. W.&Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol.Phys. Rev. Lett.85, 441–444 (2000)..
Gisin, N. et al. Quantum cryptography.Rev. Mod. Phys.74, 145–195 (2002)..
Xu, F. H. et al. Secure quantum key distribution with realistic devices.Rev. Mod. Phys.92, 025002 (2020)..
Wang, S. et al. Twin-field quantum key distribution over 830-km fibre.Nat. Photonics16, 154–161 (2022)..
Chen, Y. A. et al. An integrated space-to-ground quantum communication network over 4, 600 kilometres.Nature589, 214–219 (2021)..
Li, W. et al. High-rate quantum key distribution exceeding 110 Mb s–1.Nat. Photonics17, 416–421 (2023)..
Peev, M. et al. The SECOQC quantum key distribution network in Vienna.N. J. Phys.11, 075001 (2009)..
Stucki, D. et al. Long-term performance of the SwissQuantum quantum key distribution network in a field environment.N. J. Phys.13, 123001 (2011)..
Avesani, M. et al. Deployment-ready quantum key distribution over a classical network infrastructure in Padua.J. Lightwave Technol.40, 1658–1663 (2022)..
Sasaki, M. et al. Field testof quantum key distribution in the Tokyo QKD network.Opt. Express19, 10387–10409 (2011)..
Chen, T. Y. et al. Field test of a practical secure communication network with decoy-state quantum cryptography.Opt. Express17, 6540–6549 (2009)..
Wang, S. et al. Field and long-term demonstration of a wide area quantum key distribution network.Opt. Express22, 21739–21756 (2014)..
Dynes, J. F. et al. Cambridge quantum network.npj Quantum Inf.5, 101 (2019)..
Scarani, V. et al. The security of practical quantum key distribution.Rev. Mod. Phys.81, 1301–1350 (2009)..
Diamanti, E. et al. Practical challenges in quantum key distribution.npj Quantum Inf.2, 16025 (2016)..
Wang, L. J. et al. Experimental authentication of quantum key distribution with post-quantum cryptography.npj Quantum Inf.7, 67 (2021)..
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels.Phys. Rev. Lett.70, 1895–1899 (1993)..
Bouwmeester, D. et al. Experimental quantum teleportation.Nature390, 575–579 (1997)..
Furusawa, A. et al. Unconditional quantum teleportation.Science282, 706–709 (1998)..
Wehner, S., Elkouss, D.&Hanson, R. Quantum internet: a vision for the road ahead.Science362, eaam9288 (2018)..
Kimble, H. J. The quantum internet.Nature453, 1023–1030 (2008)..
Long, G. L.&Liu, X. S. Theoretically efficient high-capacity quantum-key-distribution scheme.Phys. Rev. A65, 032302 (2002)..
Deng, F. G., Long, G. L.&Liu, X. S. Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block.Phys. Rev. A68, 042317 (2003)..
Deng, F. G.&Long, G. L. Secure direct communication with a quantum one-time pad.Phys. Rev. A69, 052319 (2004)..
Hu, J. Y. et al. Experimental quantum secure direct communication with single photons.Light Sci. Appl.5, e16144 (2016)..
Zhang, W. et al. Quantum secure direct communication with quantum memory.Phys. Rev. Lett.118, 220501 (2017)..
Zhu, F. et al. Experimental long-distance quantum secure direct communication.Sci. Bull.62, 1519–1524 (2017)..
Qi, R. Y. et al. Implementation and security analysis of practical quantum secure direct communication.Light Sci. Appl.8, 22 (2019)..
Zhang, H. R. et al. Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states.Light Sci. Appl.11, 83 (2022)..
Qi, Z. T. et al. A 15-user quantum secure direct communication network.Light Sci. Appl.10, 183 (2021)..
Long, G. L. et al. An evolutionary pathway for the quantum internet relying on secure classical repeaters.IEEE Netw.36, 82–88 (2022)..
Orieux, A.&Diamanti, E. Recent advances on integrated quantum communications.J. Opt.18, 083002 (2016)..
Wang, J. W. et al. Integrated photonic quantum technologies.Nat. Photonics14, 273–284 (2020)..
Matthews, J. C. F. et al. Manipulation of multiphoton entanglement in waveguide quantum circuits.Nat. Photonics3, 346–350 (2009)..
Siew, S. Y. et al. Review of silicon photonics technology and platform development.J. Lightwave Technol.39, 4374–4389 (2021)..
Smit, M., Williams, K.&van der Tol, J. Past, present, and future of InP-based photonic integration.APL Photonics4, 050901 (2019)..
Joshi, C. et al. Frequency multiplexing for quasi-deterministic heralded single-photon sources.Nat. Commun.9, 847 (2018)..
He, M. B. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1and beyond.Nat. Photonics13, 359–364 (2019)..
Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits.Nat. Commun.3, 1325 (2012)..
Sibson, P. et al. Chip-based quantum key distribution.Nat. Commun.8, 13984 (2017)..
Zhang, G. et al. An integrated silicon photonic chip platform for continuous-variable quantum key distribution.Nat. Photonics13, 839–842 (2019)..
Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon.Nat. Phys.16, 148–153 (2020)..
Tanzilli, S. et al. PPLN waveguide for quantum communication.Eur. Phys. J. D. - At., Mol., Opt. Plasma Phys.18, 155–160 (2002)..
Bonfrate, G. et al. Asymmetric Mach-Zehnder germano-silicate channel waveguide interferometers for quantum cryptography systems.Electron. Lett.37, 846–847 (2001)..
Honjo, T., Inoue, K.&Takahashi, H. Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer.Opt. Lett.29, 2797–2799 (2004)..
Takesue, H. et al. Differential phase shift quantum key distribution experiment over 105 km fibre.N. J. Phys.7, 232 (2005)..
Diamanti, E. et al. 100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors.Opt. Express14, 13073–13082 (2006)..
Elshaari, A. W. et al. Hybrid integrated quantum photonic circuits.Nat. Photonics14, 285–298 (2020)..
Agnesi, C. et al. Hong–Ou–Mandel interference between independent Ⅲ-Ⅴ on silicon waveguide integrated lasers.Opt. Lett.44, 271–274 (2019)..
Lodahl, P., Mahmoodian, S.&Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures.Rev. Mod. Phys.87, 347–400 (2015)..
Schröder, T. et al. Quantum nanophotonics in diamond [Invited].J. Opt. Soc. Am. B33, B65–B83 (2016)..
Lenzini, F. et al. Diamond as a platform for integrated quantum photonics.Adv. Quantum Technol.1, 1800061 (2018)..
Senellart, P., Solomon, G.&White, A. High-performance semiconductor quantum-dot single-photon sources.Nat. Nanotechnol.12, 1026–1039 (2017)..
Orieux, A. et al. Semiconductor devices for entangled photon pair generation: a review.Rep. Prog. Phys.80, 076001 (2017)..
Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar.Phys. Rev. Lett.116, 020401 (2016)..
Somaschi, N. et al. Near-optimal single-photon sources in the solid state.Nat. Photonics10, 340–345 (2016)..
Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide.Phys. Rev. Lett.113, 093603 (2014)..
Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices.Nat. Commun.8, 889 (2017)..
Benson, O. et al. Regulated and entangled photons from a single quantum dot.Phys. Rev. Lett.84, 2513–2516 (2000)..
Müller, M. et al. On-demand generation of indistinguishable polarization-entangled photon pairs.Nat. Photonics8, 224–228 (2014)..
Chung, T. H. et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes.Nat. Photonics10, 782–787 (2016)..
Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability.Nat. Nanotechnol.14, 586–593 (2019)..
Castelletto, S. et al. A silicon carbide room-temperature single-photon source.Nat. Mater.13, 151–156 (2014)..
Högele, A. et al. Photon antibunching in the photoluminescence spectra of a single carbon nanotube.Phys. Rev. Lett.100, 217401 (2008)..
He, Y. M. et al. Single quantum emitters in monolayer semiconductors.Nat. Nanotechnol.10, 497–502 (2015)..
Kim, S. et al. Integrated on chip platform with quantum emitters in layered materials.Adv. Opt. Mater.7, 1901132 (2019)..
Engin, E. et al. Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement.Opt. Express21, 27826–27834 (2013)..
Spring, J. B. et al. Chip-based array of near-identical, pure, heralded single-photon sources.Optica4, 90–96 (2017)..
Lu, X. Y. et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication.Nat. Phys.15, 373–381 (2019)..
Jin, H. et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits.Phys. Rev. Lett.113, 103601 (2014)..
Horn, R. et al. Monolithic source of photon pairs.Phys. Rev. Lett.108, 153605 (2012)..
Collins, M. J. et al. Integrated spatial multiplexing of heralded single-photon sources.Nat. Commun.4, 2582 (2013)..
Meany, T. et al. Hybrid photonic circuit for multiplexed heralded single photons.Laser Photonics Rev.8, L42–L46 (2014)..
Kaneda, F.&Kwiat, P. G. High-efficiency single-photon generation via large-scale active time multiplexing.Sci. Adv.5, eaaw8586 (2019)..
Saravi, S., Pertsch, T.&Setzpfandt, F. Lithium niobate on insulator: an emerging platform for integrated quantum photonics.Adv. Opt. Mater.9, 2100789 (2021)..
Hwang, W. Y. Quantum key distribution with high loss: toward global secure communication.Phys. Rev. Lett.91, 057901 (2003)..
Lo, H. K., Ma, X. F.&Chen, K. Decoy state quantum key distribution.Phys. Rev. Lett.94, 230504 (2005)..
Wang, X. B. Beating the photon-number-splitting attack in practical quantum cryptography.Phys. Rev. Lett.94, 230503 (2005)..
Semenenko, H. et al. Chip-based measurement-device-independent quantum key distribution.Optica7, 238–242 (2020)..
Ma, Y. J. et al. Symmetrical polarization splitter/rotator design and application in a polarization insensitive WDM receiver.Opt. Express23, 16052–16062 (2015)..
Harris, N. C. et al. Efficient, compact and low loss thermo-optic phase shifter in silicon.Opt. Express22, 10487–10493 (2014)..
Weigel, P. O. et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth.Opt. Express26, 23728–23739 (2018)..
Xu, P. P. et al. Low-loss and broadband nonvolatile phase-change directional coupler switches.ACS Photonics6, 553–557 (2019)..
Peruzzo, A. et al. Multimode quantum interference of photons in multiport integrated devices.Nat. Commun.2, 224 (2011)..
Elshaari, A. W. et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits.Nat. Commun.8, 379 (2017)..
Hong, S. H. et al. Ultralow-loss compact silicon photonic waveguide spirals and delay lines.Photonics Res.10, 1–7 (2022)..
Qiang, X. G. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing.Nat. Photonics12, 534–539 (2018)..
Metcalf, B. J. et al. Quantum teleportation on a photonic chip.Nat. Photonics8, 770–774 (2014)..
Wang, J. W. et al. Gallium arsenide (GaAs) quantum photonic waveguide circuits.Opt. Commun.327, 49–55 (2014)..
Carolan, J. et al. Universal linear optics.Science349, 711–716 (2015)..
Wang, J. W. et al. Multidimensional quantum entanglement with large-scale integrated optics.Science360, 285–291 (2018)..
Wei, K. J. et al. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics.Phys. Rev. X10, 031030 (2020)..
Ma, C. X. et al. Silicon photonic transmitter for polarization-encoded quantum key distribution.Optica3, 1274–1278 (2016)..
Cao, L. et al. Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems.Phys. Rev. Appl.14, 011001 (2020)..
Marchetti, R. et al. Coupling strategies for silicon photonics integrated chips [Invited].Photonics Res.7, 201–239 (2019)..
Cardenas, J. et al. High coupling efficiency etched facet tapers in silicon waveguides.IEEE Photonics Technol. Lett.26, 2380–2382 (2014)..
Olislager, L. et al. Silicon-on-insulator integrated source of polarization-entangled photons.Opt. Lett.38, 1960–1962 (2013)..
Wang, J. W. et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion.Optica3, 407–413 (2016)..
Martinez, N. J. D. et al. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode.Opt. Express25, 16130–16139 (2017)..
Sprengers, J. P. et al. Waveguide superconducting single-photon detectors for integrated quantum photonic circuits.Appl. Phys. Lett.99, 181110 (2011)..
Schuck, C. et al. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.Nat. Commun.7, 10352 (2016)..
Gyger, S. et al. Reconfigurable photonics with on-chip single-photon detectors.Nat. Commun.12, 1408 (2021)..
Lomonte, E. et al. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits.Nat. Commun.12, 6847 (2021)..
Sahin, D. et al. Waveguide photon-number-resolving detectors for quantum photonic integrated circuits.Appl. Phys. Lett.103, 111116 (2013)..
Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors.Nat. Commun.6, 5873 (2015)..
Gerrits, T. et al. On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing.Phys. Rev. A84, 060301 (2011)..
Höpker, J. P. et al. Towards integrated superconducting detectors on lithium niobate waveguides.Proceedings of SPIE 10358, (eds Soci, C., Agio, M.&Srinivasan K.)Quantum Photonic Devices(SPIE, San Diego, 2017)..
Raffaelli, F. et al. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers.Quantum Sci. Technol.3, 025003 (2018)..
Tasker, J. F. et al. Silicon photonics interfaced with integrated electronics for 9 GHz measurement of squeezed light.Nat. Photonics15, 11–15 (2021)..
Bai, B. et al. 18.8 gbps real-time quantum random number generator with a photonic integrated chip.Appl. Phys. Lett.118, 264001 (2021)..
Milovančev, D. et al. Chip-level GHz capable balanced quantum homodyne receivers.J. Lightwave Technol.40, 7518–7528 (2022)..
Bruynsteen, C. et al. Integrated balanced homodyne photonic–electronic detector for beyond 20 GHz shot-noise-limited measurements.Optica8, 1146–1152 (2021)..
Carroll, L. et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices.Appl. Sci.6, 426 (2016)..
Zimmermann, L. et al. Packaging and assembly for integrated photonics—a review of the ePIXpack photonics packaging platform.IEEE J. Sel. Top. Quantum Electron.17, 645–651 (2011)..
O'Brien, P. et al. Packaging of silicon photonic devices. InSilicon Photonics Ⅲ: Systems and Applications(eds Pavesi, L.&Lockwood, D. J.) 217–236 (Springer, Berlin, 2016).
Lee, J. S. et al. Meeting the electrical, optical, and thermal design challenges of photonic-packaging.IEEE J. Sel. Top. Quantum Electron.22, 8200209 (2016)..
Taillaert, D. et al. Grating couplers for coupling between optical fibers and nanophotonic waveguides.Jpn. J. Appl. Phys.45, 6071–6077 (2006)..
Pu, M. H. et al. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide.Opt. Commun.283, 3678–3682 (2010)..
He, L. Y. et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits.Opt. Lett.44, 2314–2317 (2019)..
Preble, S. F. et al. On-chip quantum interference from a single silicon ring-resonator source.Phys. Rev. Appl.4, 021001 (2015)..
Sacher, W. D. et al. Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler.Opt. Express22, 10938–10947 (2014)..
Marchetti, R. et al. High-efficiency grating-couplers: demonstration of a new design strategy.Sci. Rep.7, 16670 (2017)..
Bakir, B. B. et al. Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers.IEEE Photonics Technol. Lett.22, 739–741 (2010)..
Dangel, R. et al. Polymer waveguides for electro-optical integration in data centers and high-performance computers.Opt. Express23, 4736–4750 (2015)..
Taballione, C. et al. A universal fully reconfigurable 12-mode quantum photonic processor.Mater. Quantum Technol.1, 035002 (2021)..
Abrams, N. C. et al. Silicon photonic 2.5D multi-chip module transceiverfor high-performance data centers.J. Lightwave Technol.38, 3346–3357 (2020)..
Worhoff, K. et al. Flip-chip assembly for photonic circuits.Proceedings of SPIE 5454, Micro-Optics: Fabrication, Packaging, and Integration9–20 (SPIE, Strasbourg, 2004).
Zhang, X. R. et al. Copper pillar bump structure optimization for flip chip packaging with Cu/Low-K stack.Proc. 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems.1–7 (IEEE, Bordeaux, 2010).
Pirandola, S. et al. Advances in quantum cryptography.Adv. Opt. Photonics12, 1012–1236 (2020)..
Kwek, L. C. et al. Chip-based quantum key distribution.AAPPS Bull.31, 15 (2021)..
Stipcevic, M. Quantum random number generators and their applications in cryptography.Proc. SPIE 8375, Advanced Photon Counting Techniques Ⅵ. 837504 (eds Itzler, M. A.) (SPIE, Baltimore, 2012).
Williams, C. R. S. et al. Fast physical random number generator using amplified spontaneous emission.Opt. Express18, 23584–23597 (2010)..
Qi, B. et al. High-speed quantum random number generation by measuring phase noise of a single-mode laser.Opt. Lett.35, 312–314 (2010)..
Xu, F. H. et al. Ultrafast quantum random number generation based on quantum phase fluctuations.Opt. Express20, 12366–12377 (2012)..
Nie, Y. Q. et al. The generation of 68 Gbps quantum random number bymeasuring laser phase fluctuations.Rev. Sci. Instrum.86, 063105 (2015)..
Liu, J. L. et al. 117 Gbits/s quantum random number generation with simple structure.IEEE Photonics Technol. Lett.29, 283–286 (2017)..
Gabriel, C. et al. A generator for unique quantum random numbers based on vacuum states.Nat. Photonics4, 711–715 (2010)..
Symul, T., Assad, S. M.&Lam, P. K. Real time demonstration of high bitrate quantum random number generation with coherent laser light.Appl. Phys. Lett.98, 231103 (2011)..
Shi, Y. C., Chng, B.&Kurtsiefer, C. Random numbers from vacuum fluctuations.Appl. Phys. Lett.109, 041101 (2016)..
Zheng, Z. Y. et al. 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation.Rev. Sci. Instrum.90, 043105 (2019)..
Zhou, Q. et al. Practical quantum random-number generation based on sampling vacuum fluctuations.Quantum Eng.1, e8 (2019)..
Haylock, B. et al. Multiplexed quantum random number generation.Quantum3, 141 (2019)..
Abellan, C. et al. Quantum entropy source on an InP photonic integrated circuit for random number generation.Optica3, 989–994 (2016)..
Raffaelli, F. et al. Generation of random numbers by measuring phase fluctuations from a laser diode with a silicon-on-insulator chip.Opt. Express26, 19730–19741 (2018)..
Regazzoni, F. et al. A high speed integrated quantum random number generator with on-chip real-time randomness extraction. Preprint athttps://doi.org/10.48550/arXiv.2102.06238https://doi.org/10.48550/arXiv.2102.06238(2021).
Bruynsteen, C. et al. 100-Gbit/s Integrated Quantum Random Number Generator Based on Vacuum Fluctuations.PRX Quantum4, 010330 (2023)..
Hughes, R. J. et al. Network-centric quantum communications with application to critical infrastructure protection. Print athttps://doi.org/10.48550/arXiv.1305.0305https://doi.org/10.48550/arXiv.1305.0305(2013).
Zhang, P. et al. Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client.Phys. Rev. Lett.112, 130501 (2014)..
Vest, G. et al. Design and evaluation of a handheld quantum key distribution sender module.IEEE J. Sel. Top. Quantum Electron.21, 6600607 (2015)..
Thompson, M. G. Large-scale integrated quantum photonic technologies for communications and computation.Proc. 2019 Optical Fiber Communications Conference.1–3. (IEEE, San Diego, 2019).
Paraïso, T. K. et al. A modulator-free quantum key distribution transmitter chip.npj Quantum Inf.5, 42 (2019)..
Paraïso, T. K. et al. A photonic integrated quantum secure communication system.Nat. Photonics15, 850–856 (2021)..
Sibson, P. et al. Integrated silicon photonics for high-speed quantum key distribution.Optica4, 172–177 (2017)..
Cai, H. et al. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution.Opt. Express25, 12282–12294 (2017)..
Bunandar, D. et al. Metropolitan quantum key distribution with silicon photonics.Phys. Rev. X8, 021009 (2018)..
Avesani, M. et al. Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics.npj Quantum Inf.7, 93 (2021)..
Geng, W. et al. Stable quantum key distribution using a silicon photonic transceiver.Opt. Express27, 29045–29054 (2019)..
Dai, J. C. et al. Pass-block architecture for distributed-phase-reference quantum key distribution using silicon photonics.Opt. Lett.45, 2014–2017 (2020)..
Kong, L. W. et al. Photonic integrated quantum key distribution receiver for multiple users.Opt. Express28, 18449–18455 (2020)..
Ding, Y. H. et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits.npj Quantum Inf.3, 25 (2017)..
Semenenko, H. et al. Interference between independent photonic integrated devices for quantum key distribution.Opt. Lett.44, 275–278 (2019)..
Wang, C. Y. et al. Integrated measurement server for measurement-device-independent quantum key distribution network.Opt. Express27, 5982–5989 (2019)..
Zheng, X. D. et al. Heterogeneously integrated, superconducting silicon-photonic platform for measurement-device-independent quantum key distribution.Adv. Photonics3, 055002 (2021)..
Grosshans, F.&Grangier, P. Continuous variable quantum cryptography using coherent states.Phys. Rev. Lett.88, 057902 (2002)..
Grosshans, F. et al. Quantum key distribution using Gaussian-modulated coherent states.Nature421, 238–241 (2003)..
Weedbrook, C. et al. Gaussian quantum information.Rev. Mod. Phys.84, 621–669 (2012)..
Ziebell, M. et al. Towards on-chip continuous-variable quantum key distribution.Proc. European Conference on Lasers and Electro-Optics—European Quantum Electronics Conference 2015.JSV_4_2 (Optica Publishing Group, Munich, 2015).
Pirandola, S. et al. Advances in quantum teleportation.Nat. Photonics9, 641–652 (2015)..
Ren, J. G. et al. Ground-to-satellite quantum teleportation.Nature549, 70–73 (2017)..
Takesue, H. et al. Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors.Optica2, 832–835 (2015)..
Huo, M. R. et al. Deterministic quantum teleportation through fiber channels.Sci. Adv.4, eaas9401 (2018)..
Nölleke, C. et al. Efficient teleportation between remote single-atom quantum memories.Phys. Rev. Lett.110, 140403 (2013)..
Liu, H. Y. et al. Optical-relayed entanglement distribution using drones as mobile nodes.Phys. Rev. Lett.126, 020503 (2021)..
Wang, Q. Q. et al. Chip-based quantum communications.J. Semicond.42, 091901 (2021)..
Corrielli, G. et al. Rotated waveplates in integrated waveguide optics.Nat. Commun.5, 4249 (2014)..
Zhang, X. et al. Integrated silicon nitride time-bin entanglement circuits.Opt. Lett.43, 3469–3472 (2018)..
Liu, S. et al. High speed ultra-broadband amplitude modulators with ultrahigh extinction>65 dB.Opt. Express25, 11254–11264 (2017)..
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages.Nature562, 101–104 (2018)..
Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon.Nat. Mater.18, 42–47 (2019)..
Eltes, F. et al. An integrated optical modulator operating at cryogenic temperatures.Nat. Mater.19, 1164–1168 (2020)..
Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip.Nature556, 349–354 (2018)..
Li, C. Y. et al. Secure quantum communication in the presence of phase- and polarization-dependent loss.Phys. Rev. A98, 042324 (2018)..
Huang, C. F. et al. Experimental secure quantum key distribution in the presence of polarization-dependent loss.Phys. Rev. A105, 012421 (2022)..
Li, L. et al. Practical security of a chip-based continuous-variable quantum-key-distribution system.Phys. Rev. A103, 032611 (2021)..
Zheng, Y. et al. Quantum hacking on an integrated continuous-variable quantum key distribution system via power analysis.Entropy23, 176 (2021)..
Autebert, C. et al. Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons.Optica3, 143–146 (2016)..
Grassani, D. et al. Micrometer-scale integrated silicon source of time-energy entangled photons.Optica2, 88–94 (2015)..
Nadlinger, D. P. et al. Experimental quantum key distribution certified by Bell's theorem.Nature607, 682–686 (2022)..
Zhang, W. et al. A device-independent quantum key distribution system for distant users.Nature607, 687–691 (2022)..
Liu, W. Z. et al. Toward a photonic demonstration of device-independent quantum key distribution.Phys. Rev. Lett.129, 050502 (2022)..
Hermans, S. L. N. et al. Qubit teleportation between non-neighbouring nodes in a quantum network.Nature605, 663–668 (2022)..
Jia, L. X. et al. Efficient suspended coupler with loss less than −1.4 dB between Si-photonic waveguide and cleaved single mode fiber.J. Lightwave Technol.36, 239–244 (2018)..
Fang, Q. et al. Mode-size converter with high coupling efficiency and broad bandwidth.Opt. Express19, 21588–21594 (2011)..
Cheben, P. et al. Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency.Opt. Express23, 22553–22563 (2015)..
Barwicz, T. et al. Automated, high-throughput photonic packaging.Opt. Fiber Technol.44, 24–35 (2018)..
Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding.Optica5, 876–883 (2018)..
Dietrich, P. I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration.Nat. Photonics12, 241–247 (2018)..
Tiecke, T. G. et al. Efficient fiber-optical interface for nanophotonic devices.Optica2, 70–75 (2015)..
Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies.Nat. Rev. Phys.4, 194–208 (2022)..
Aaronson, S.&Arkhipov, A. The computational complexity of linear optics.Proc. 43rd Annual ACM Symposium on Theory of Computing.333–342 (ACM, San Jose, 2011).
Rohde, P. P.&Ralph, T. C. Error tolerance of the boson-sampling model for linear optics quantum computing.Phys. Rev. A85, 022332 (2012)..
Knill, E., Laflamme, R.&Milburn, G. J. A scheme for efficient quantum computation with linear optics.Nature409, 46–52 (2001)..
Raussendorf, R.&Briegel, H. J. A one-way quantum computer.Phys. Rev. Lett.86, 5188–5191 (2001)..
Nielsen, M. A. Optical quantum computation using cluster states.Phys. Rev. Lett.93, 040503 (2004)..
Walther, P. et al. Experimental one-way quantum computing.Nature434, 169–176 (2005)..
Menicucci, N. C., Flammia, S. T.&Pfister, O. One-way quantum computing in the optical frequency comb.Phys. Rev. Lett.101, 130501 (2008)..
Saggio, V. et al. Experimental quantum speed-up in reinforcement learning agents.Nature591, 229–233 (2021)..
Spring, J. B. et al. Boson sampling on a photonic chip.Science339, 798–801 (2013)..
Broome, M. A. et al. Photonic Boson sampling in a tunable circuit.Science339, 794–798 (2013)..
Tillmann, M. et al. Experimental boson sampling.Nat. Photonics7, 540–544 (2013)..
Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling.Nat. Photonics7, 545–549 (2013)..
Bentivegna, M. et al. Experimental scattershot boson sampling.Sci. Adv.1, e1400255 (2015)..
Wang, H. et al. High-efficiency multiphoton boson sampling.Nat. Photonics11, 361–365 (2017)..
Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip.Nature591, 54–60 (2021)..
Paesani, S. et al. Generation and sampling of quantum states of light in a silicon chip.Nat. Phys.15, 925–929 (2019)..
Hamilton, C. S. et al. Gaussian Boson sampling.Phys. Rev. Lett.119, 170501 (2017)..
Kruse, R. et al. Detailed study of Gaussian boson sampling.Phys. Rev. A100, 032326 (2019)..
Zhong, H. S. et al. Quantum computational advantage using photons.Science370, 1460–1463 (2020)..
Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor.Nature606, 75–81 (2022)..
Arrazola, J. M.&Bromley, T. R. Using Gaussian Boson sampling to find dense subgraphs.Phys. Rev. Lett.121, 030503 (2018)..
Quesada, N. Franck–Condon factors by counting perfect matchings of graphs with loops.J. Chem. Phys.150, 164113 (2019)..
Banchi, L. et al. Molecular docking with Gaussian Boson sampling.Sci. Adv.6, eaax1950 (2020)..
Huh, J.&Yung, M. H. Vibronic Boson sampling: generalized Gaussian Boson sampling for molecular vibronic spectra at finite temperature.Sci. Rep.7, 7462 (2017)..
Politi, A. et al. Silica-on-silicon waveguide quantum circuits.Science320, 646–649 (2008)..
Politi, A., Matthews, J. C. F.&O'Brien, J. L. Shor's quantum factoring algorithm on a photonic chip.Science325, 1221 (2009)..
Bourassa, J. E. et al. Blueprint for a scalable photonic fault-tolerant quantum computer.Quantum5, 392 (2021)..
Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing.APL Photonics2, 030901 (2017)..
Browne, D. E.&Rudolph, T. Resource-efficient linear optical quantum computation.Phys. Rev. Lett.95, 010501 (2005)..
Pant, M. et al. Percolation thresholds for photonic quantum computing.Nat. Commun.10, 1070 (2019)..
Adcock, J. C. et al. Programmable four-photon graph states on a silicon chip.Nat. Commun.10, 3528 (2019)..
Ciampini, M. A. et al. Path-polarization hyperentangled and cluster states of photons on a chip.Light Sci. Appl.5, e16064 (2016)..
Vigliar, C. et al. Error-protected qubits in a silicon photonic chip.Nat. Phys.17, 1137–1143 (2021)..
Silverstone, J. W. et al. Silicon quantum photonics.IEEE J. Sel. Top. Quantum Electron.22, 390–402 (2016)..
Blumenthal, D. J. et al. Silicon nitride in silicon photonics.Proc. IEEE106, 2209–2231 (2018)..
Boes, A. et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits.Laser Photonics Rev.12, 1700256 (2018)..
Dietrich, C. P. et al. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits.Laser Photonics Rev.10, 870–894 (2016)..
Trenti, A. et al. Thermo-optic coefficient and nonlinear refractive index of silicon oxynitride waveguides.AIP Adv.8, 025311 (2018)..
Shi, Y. et al. A review: preparation, performance, and applications of silicon oxynitride film.Micromachines10, 552 (2019)..
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution