1.State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
3.Department of Chemistry, Tsinghua University, Beijing 100084, China
Lan Jiang (jianglan@bit.edu.cn)
Published:31 August 2023,
Published Online:04 July 2023,
Received:19 December 2022,
Revised:26 April 2023,
Accepted:06 May 2023
Scan QR Code
Li, J. Q. et al. Nanoscale multi-beam lithography of photonic crystals with ultrafast laser. Light: Science & Applications, 12, 1604-1615 (2023).
Li, J. Q. et al. Nanoscale multi-beam lithography of photonic crystals with ultrafast laser. Light: Science & Applications, 12, 1604-1615 (2023). DOI: 10.1038/s41377-023-01178-3.
Photonic crystals are utilized in many noteworthy applications like optical communications
light flow control
and quantum optics. Photonic crystal with nanoscale structure is important for the manipulation of light propagation in visible and near-infrared range. Herein
we propose a novel multi beam lithography method to fabricate photonic crystal with nanoscale structure without cracking. Using multi-beam ultrafast laser processing and etching
parallel channels with subwavelength gap are obtained in yttrium aluminum garnet crystal. Combining optical simulation based on Debye diffraction
we experimentally show the gap width of parallel channels can be controlled at nanoscale by changing phase holograms. With the superimposed phase hologram designing
functional structures of complicated channel arrays distribution can be created in crystal. Optical gratings of different periods are fabricated
which can diffract incident light in particular ways. This approach can efficiently manufacture nanostructures with controllable gap
and offer an alternative to the fabrication of complex photonic crystal for integrated photonics applications.
Ceccarelli, F. et al. Low power reconfigurability and reduced crosstalk in integrated photonic circuits fabricated by femtosecond laser micromachining.Laser Photonics Rev.14, 2000024, https://doi.org/10.1002/lpor.202000024 (2020)..
El Hassan, A. et al. Corner states of light in photonic waveguides.Nat. Photonics13, 697–700, https://doi.org/10.1038/s41566-019-0519-y (2019)..
Wei, D. Z. et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal.Nat. Photonics12, 596–600, https://doi.org/10.1038/s41566-018-0240-2 (2018)..
Wei, D. Z. et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals.Nat. Commun.10, 4193, https://doi.org/10.1038/s41467-019-12251-0 (2019)..
Xu, T. et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate.Nat. Photonics12, 591–595, https://doi.org/10.1038/s41566-018-0225-1 (2018)..
John, S. Strong localization of photons in certain disordered dielectric superlattices.Phys. Rev. Lett.58, 2486–2489, https://doi.org/10.1103/PhysRevLett.58.2486 (1987)..
Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics.Phys. Rev. Lett.58, 2059–2062, https://doi.org/10.1103/PhysRevLett.58.2059 (1987)..
Li, M. X. et al. Lithium niobate photonic-crystal electro-optic modulator.Nat. Commun.11, 4123, https://doi.org/10.1038/s41467-020-17950-7 (2020)..
Wu, S. L. et al. Manipulating luminescence of light emitters by photonic crystals.Adv. Mater.30, 1803362, https://doi.org/10.1002/adma.201803362 (2018)..
Yu, S. P. et al. Spontaneous pulse formation in edgeless photonic crystal resonators.Nat. Photonics15, 461–467, https://doi.org/10.1038/s41566-021-00800-3 (2021)..
Butt, M. A., Khonina, S. N.&Kazanskiy, N. L. Recent advances in photonic crystal optical devices: a review.Opt. Laser Technol.142, 107265, https://doi.org/10.1016/j.optlastec.2021.107265 (2021)..
De La Rue, R. M.&Seassal, C. Photonic crystal devices: some basics and selected topics.Laser Photonics Rev.6, 564–597, https://doi.org/10.1002/lpor.201100044 (2012)..
Eaton, S. M. et al. Quantum micro–nano devices fabricated in diamond by femtosecond laser and ion irradiation.Adv. Quantum Technol.2, 1900006, https://doi.org/10.1002/qute.201900006 (2019)..
Qiao, M. et al. Femtosecond laser induced phase transformation of TiO2with exposed reactive facets for improved photoelectrochemistry performance.ACS Appl. Mater Interfaces12, 41250–41258, https://doi.org/10.1021/acsami.0c10026 (2020)..
Le, T. S. D. et al. Green flexible graphene–inorganic-hybrid micro-supercapacitors made of fallen leaves enabled by ultrafast laser pulses.Adv. Funct. Mater.32, 2107768, https://doi.org/10.1002/adfm.202107768 (2022)..
Yan, J. F. et al. Self-powered SnSe photodetectors fabricated by ultrafast laser.Nano Energy97, 107188, https://doi.org/10.1016/j.nanoen.2022.107188 (2022)..
Qiao, M., Yan, J. F.&Jiang, L. Direction controllable nano-patterning of titanium by ultrafast laser for surface coloring and optical encryption.Adv. Opt. Mater.10, 2101673, https://doi.org/10.1002/adom.202101673 (2022)..
Watanabe, W., Li, Y.&Itoh, K. [INVITED]Ultrafast laser micro-processing of transparent material.Opt. Laser Technol.78, 52–61, https://doi.org/10.1016/j.optlastec.2015.09.023 (2016)..
Jiang, L. et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application.Light Sci. Appl.7, 17134, https://doi.org/10.1038/lsa.2017.134 (2018)..
Guo, H. et al. Conductive writing with high precision by laser-induced point-to-line carbonization strategy for flexible supercapacitors.Adv. Opt. Mater.9, 2100793, https://doi.org/10.1002/adom.202100793 (2021)..
Xie, J. W. et al. Atomic-level insight into the formation of subsurface dislocation layer and its effect on mechanical properties during ultrafast laser micro/Nano fabrication.Adv. Funct. Mater.32, 2108802, https://doi.org/10.1002/adfm.202108802 (2022)..
Sakakura, M. et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass.Light Sci. Appl.9, 141–150, https://doi.org/10.1038/s41377-020-0250-y (2020)..
Juodkazis, S. et al. Control over the crystalline state of sapphire.Adv. Mater.18, 1361–1364, https://doi.org/10.1002/adma.200501837 (2006)..
Roth, G. L., Rung, S., Esen, C.&Hellmann, R. Microchannels inside bulk PMMA generated by femtosecond laser using adaptive beam shaping.Opt. Express28, 5801–5811, https://doi.org/10.1364/OE.384948 (2020)..
Jia, Y. C., Wang, S. X.&Chen, F. Femtosecondlaser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application.Opto-Electron. Adv.3, 190042, https://doi.org/10.29026/oea.2020.190042 (2020)..
Zhang, B. et al. Femtosecond laser inscribed novel polarization beam splitters based on tailored waveguide configurations.J. Light. Technol.39, 1438–1443 (2021)..
Zhang, B., Wang, L.&Chen, F. Recent advances in femtosecond laser processing of LiNbO3crystals for photonic applications.Laser Photonics Rev.14, 1900407, https://doi.org/10.1002/lpor.201900407 (2020)..
Lv, J. M. et al. Mid-infrared waveguiding in three-dimensional microstructured optical waveguides fabricated by femtosecond-laser writing and phosphoric acid etching.Photonics Res.8, 257–262, https://doi.org/10.1364/PRJ.380215 (2020)..
Song, B. S., Noda, S.&Asano, T. Photonic devices based on in-plane hetero photonic crystals.Science300, 1537–1537, https://doi.org/10.1126/science.1083066 (2003)..
Parimi, P. V. et al. Negative refraction and left-handed electromagnetism in microwave photonic crystals.Phys. Rev. Lett.92, 127401, https://doi.org/10.1103/PhysRevLett.92.127401 (2004)..
Withayachumnankul, W., Fujita, M.&Nagatsuma, T. Integrated silicon photonic crystals toward terahertz communications.Adv. Opt. Mater.6, 1800401, https://doi.org/10.1002/adom.201800401 (2018)..
Ródenas, A. et al. Three-dimensional femtosecond laser nanolithography of crystals.Nat. Photonics13, 105–109, https://doi.org/10.1038/s41566-018-0327-9 (2019)..
Joannopoulos, J. D., Villeneuve, P. R.&Fan, S. H. Photonic crystals: putting a new twist on light.Nature386, 143–149, https://doi.org/10.1038/386143a0 (1997)..
Qin, L. et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography.Nano Lett.20, 4916–4923, https://doi.org/10.1021/acs.nanolett.0c00978 (2020)..
Lin, Z. Y., Ji, L. F.&Hong, M. H. Approximately 30 nm nanogroove formation on single crystalline silicon surface under pulsed nanosecond laser irradiation.Nano Lett.22, 7005–7010, https://doi.org/10.1021/acs.nanolett.2c01794 (2022)..
Chen, L. et al. Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens.Opto-Electron. Adv.4, 200036 (2021)..
Yang, L. et al. Multi-material multi-photon 3D laser micro- and nanoprinting.Light: Adv. Manuf.2, 17, https://doi.org/10.37188/lam.2021.017 (2021)..
Tokel, O. et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon.Nat. Photonics11, 639–645, https://doi.org/10.1038/s41566-017-0004-4 (2017)..
Tang, M. et al. Maskless multiple-beam laser lithography for large-area nanostructure/microstructure fabrication.Appl. Opt.50, 6536–6542, https://doi.org/10.1364/AO.50.006536 (2011)..
Lin, Y. et al. Ultrafast-laser-induced parallel phase-change nanolithography.Appl. Phys. Lett.89, 041108, https://doi.org/10.1063/1.2235855 (2006)..
Liu, C. H. et al. Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching.Appl. Phys. A101, 237–241, https://doi.org/10.1007/s00339-010-5807-9 (2010)..
Yuan, D. J. et al. Heteroepitaxial patterned growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference Ablation.Adv. Funct. Mater.20, 3484–3489, https://doi.org/10.1002/adfm.201001058 (2010)..
Choudhury, D. et al. Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications.Appl. Phys. Lett.103, 041101, https://doi.org/10.1063/1.4816338 (2013)..
Johnson, W. A., North, J. C.&Wolfe, R. Differential etching of ion-implanted garnet.J. Appl. Phys.44, 4753–4757, https://doi.org/10.1063/1.1662031 (1973)..
Nunn, P. J. T. et al. Ion beam enhanced chemical etching of Nd: YAG for optical waveguides.Nucl. Instrum. Methods Phys. Res. Sect. B127-128, 507–511, https://doi.org/10.1016/S0168-583X(96)00980-9 (1997)..
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution