1.State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, 200083 Shanghai, China
2.University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
3.State Key Laboratory for Information Photonics and Optical Communications, School of Electronic Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing, China
Jing Zhou (jzhou@mail.sitp.ac.cn)
Weida Hu (wdhu@mail.sitp.ac.cn)
Xiaoshuang Chen (xschen@mail.sitp.ac.cn)
Published:31 August 2023,
Published Online:14 July 2023,
Received:23 November 2022,
Revised:16 May 2023,
Accepted:22 May 2023
Scan QR Code
Bu Y. H. et al. Configurable circular-polarization-dependent optoelectronic silent state for ultrahigh light ellipticity discrimination. Light: Science & Applications, 12, 1651-1660 (2023).
Bu Y. H. et al. Configurable circular-polarization-dependent optoelectronic silent state for ultrahigh light ellipticity discrimination. Light: Science & Applications, 12, 1651-1660 (2023). DOI: 10.1038/s41377-023-01193-4.
Filterless light-ellipticity-sensitive optoelectronic response generally has low discrimination
thus severely hindering the development of monolithic polarization detectors. Here
we achieve a breakthrough based on a configurable circular-polarization-dependent optoelectronic silent state created by the superposition of two photoresponses with enantiomerically opposite ellipticity dependences. The zero photocurrent and the significantly suppressed noise of the optoelectronic silent state singularly enhance the circular polarization extinction ratio (CPER) and the sensitivity to light ellipticity perturbation. The CPER of our device approaches infinity by the traditional definition. The newly established CPER taking noise into account is 3–4 orders of magnitude higher than those of ordinary integrated circular polarization detectors
and it remains high in an expanded wavelength range. The noise equivalent light ellipticity difference goes below 0.009° Hz
−1/2
at modulation frequencies above 1000 Hz by a light power of 281 μW. This scheme brings a leap in developing monolithic ultracompact circular polarization detectors.
Graydon, O. Global position by polarization.Nat. Photon.12, 318 (2018)..
Zhan, Z. W. et al. Optical polarization–based seismicand water wave sensing on transoceanic cables.Science371, 931–936 (2021)..
He, C. et al. Polarisation optics for biomedical and clinical applications: a review.Light Sci. Appl.10, 194 (2021)..
Lu, J. et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order.Science371, 1368–1374 (2021)..
Zhou, S. et al. Polarization-dispersive imaging spectrometer for scattering circular dichroism spectroscopy of single chiral nanostructures.Light Sci. Appl.11, 64 (2022)..
Cotton, D. V. et al. Polarization due to rotational distortion in the bright star Regulus. Nature.Astronomy1, 690–696 (2017)..
Martínez, A. Polarimetry enabled by nanophotonics.Science362, 750–751 (2018)..
Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera.Science365, eaax1839 (2019)..
Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry.Nature604, 266–272 (2022)..
Wei, J. X. et al. Mid-infrared semimetal polarization detectors with configurable polarity transition.Nat. Photon.15, 614–621 (2021)..
Cai, J. R. et al. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles.Nat. Nanotechnol.17, 408–416 (2022)..
Dai, M. J. et al. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection.Nat. Commun.13, 4560 (2022)..
Xiong, Y. F. et al. Twisted black phosphorus–based van der Waals stacks for fiber-integrated polarimeters.Sci. Adv.8, eabo0375 (2022)..
Basiri, A. et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements.Light Sci. Appl.8, 78 (2019)..
Li, L. F. et al. Monolithic full-stokes near-infrared polarimetry with chiral plasmonic metasurface integrated graphene-silicon photodetector.ACS Nano14, 16634–16642 (2020)..
Fang, C. et al. Self-powered filterless on-chip full-stokes polarimeter.Nano Lett.21, 6156–6162 (2021)..
Probst, P. T. et al. Mechano-tunable chiral metasurfaces via colloidal assembly.Nat. Mater.20, 1024–1028 (2021)..
van der Laan, J. D. et al. Superior signal persistence of circularly polarized light in polydisperse, real-world fog environments.Appl. Opt.57, 5464–5473 (2018)..
Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit.Nature466, 730–734 (2010)..
De Greve, K. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.Nature491, 421–425 (2012)..
Ding, F., Pors, A.&Bozhevolnyi, S. I. Gradient metasurfaces: a review of fundamentals and applications.Rep. Prog. Phys.81, 026401 (2018)..
Ishii, A.&Miyasaka, T. Direct detection of circular polarized light in helical 1D perovskite-based photodiode.Sci. Adv.6, eabd3274 (2020)..
Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-Ⅰ Weyl semimetal.Nat. Mater.18, 471–475 (2019)..
Xu, S. Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2.Nat. Phys.14, 900–906 (2018)..
Afshinmanesh, F. et al. Measurement of the polarization state of light using an integrated plasmonic polarimeter.Nanophotonics1, 125–129 (2012)..
Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials.Nat. Commun.6, 8379 (2015)..
Jiang, Q. et al. Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe2.Nanoscale12, 5906–5913 (2020)..
Peng, J. Y., Cumming, B. P.&Gu, M. Direct detection of photon spin angular momentum by a chiral graphene mid-infrared photodetector.Opt. Lett.44, 2998–3001 (2019)..
Lu, F. et al. Thermopile detector of light ellipticity.Nat. Commun.7, 12994 (2016)..
Thomaschewski, M. et al. On-chip detection of optical spin-orbit interactions in plasmonic nanocircuits.Nano Lett.19, 1166–1171 (2019)..
Zhou, J. et al. Cavity coupled plasmonic resonator enhanced infrared detectors.Appl. Phys. Lett.119, 160504 (2021)..
Guo, S. K. et al. Enhanced infrared photoresponse induced by symmetry breaking in a hybrid structure of graphene and plasmonic nanocavities.Carbon170, 49–58 (2020)..
Zhang, D. H. et al. Enhanced polarization sensitivity by plasmonic-cavity in graphene phototransistors.J. Appl. Phys.126, 074301 (2019)..
Lan, H. Y. et al. Gate-tunable Plasmon-enhanced photodetection in a monolayer MoS2phototransistor with ultrahigh photoresponsivity.Nano Lett.21, 3083–3091 (2021)..
Brar, V. W., Sherrott, M. C.&Jariwala, D. Emerging photonic architectures in two-dimensional opto-electronics.Chem. Soc. Rev.47, 6824–6844 (2018)..
Wang, W. Y. et al. Hot electron-based near-infrared photodetection using bilayer MoS2.Nano Lett.15, 7440–7444 (2015)..
Hong, T. et al. Plasmonic hot electron induced photocurrent response at MoS2-metal junctions.ACS Nano.9, 5357–5363 (2015)..
Hooge, F. N., Kleinpenning, T. G. M.&Vandamme, L. K. J. Experimental studies on 1/f noise.Rep. Prog. Phys.44, 479–532 (1981)..
Chu, Z. S. et al. Circular polarization discrimination enhanced by anisotropic media.Adv. Opt. Mater.8, 1901800 (2020)..
Jariwala, D. et al. Near-unity absorption in van der Waals semiconductors for ultrathin optoelectronics.Nano Lett.16, 5482–5487 (2016)..
Wong, J. et al. High photovoltaic quantum efficiency in ultrathin van der Waals heterostructures.ACS Nano11, 7230–7240 (2017)..
Waclawek, J. P. et al. Balanced-detection interferometric cavity-assisted photothermal spectroscopy.Opt. Express27, 12183–12195 (2019)..
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution