1.ETH Zurich, Institute of Electromagnetic Fields (IEF), Gloriastrasse 35, 8092 Zürich, Switzerland
2.ONERA, DOTA, Paris Saclay University, F-92322 Châtillon
3.Thales Alenia Space in Switzerland, Schaffhauserstrasse 580, 8052 Zürich, Switzerland
4.Polariton Technologies AG, 8803 Rüschlikon, Switzerland
5.Present address: Currently with LNE-SYRTE, Observatoire de Paris, Paris, France
Yannik Horst (yannik.horst@ief.ee.ethz.ch)
Juerg Leuthold (leuthold@ethz.ch)
Published:30 September 2023,
Published Online:20 June 2023,
Received:09 February 2023,
Revised:04 May 2023,
Accepted:01 June 2023
Scan QR Code
Horst, Y. et al. Tbit/s line-rate satellite feeder links enabled by coherent modulation and full-adaptive optics. Light: Science & Applications, 12, 1727-1738 (2023).
Horst, Y. et al. Tbit/s line-rate satellite feeder links enabled by coherent modulation and full-adaptive optics. Light: Science & Applications, 12, 1727-1738 (2023). DOI: 10.1038/s41377-023-01201-7.
Free-space optical (FSO) communication technologies constitute a solution to cope with the bandwidth demand of future satellite-ground netwo
rks. They may overcome the RF bottleneck and attain data rates in the order of Tbit/s with only a handful of ground stations. Here
we demonstrate single-carrier Tbit/s line-rate transmission over a free-space channel of 53.42 km between the Jungfraujoch mountain top (3700 m) in the Swiss Alps and the Zimmerwald Observatory (895 m) near the city of Bern
achieving net-rates of up to 0.94 Tbit/s. With this scenario a satellite-ground feeder link is mimicked under turbulent conditions. Despite adverse conditions high throughput was achieved by employing a full adaptive optics system to correct the distorted wavefront of the channel and by using polarization-multiplexed high-order complex modulation formats. It was found that adaptive optics does not distort the reception of coherent modulation formats. Also
we introduce constellation modulation – a new four-dimensional BPSK (4D-BPSK) modulation format as a technique to transmit high data rates under lowest SNR. This way we show 53 km FSO transmission of 13.3 Gbit/s and 210 Gbit/s with as little as 4.3 and 7.8 photons per bit
respectively
at a bit-error ratio of 1 ∙ 10
−3
. The experiments show that advanced coherent modulation coding in combination with full adaptive optical filtering are proper means to make next-generation Tbit/s satellite communications practical.
Pallone, T. 5 trends in satellite communications on the horizon.https://news.itu.int/satellite-communications-trends/https://news.itu.int/satellite-communications-trends/(2018).
Gregory, M. et al. TESAT laser communication terminal performance results on 5.6Gbit coherent inter satellite and satellite to ground links. InInternational Conference on Space Optics—ICSO 2010, vol. 10565 (SPIE, 2017).
Pérez-Trufero, J. et al. High throughput satellite system with Q/V-band gateways and its integration with terrestrial broadband communication networks. In32nd AIAA International Communications Satellite Systems Conference, 4384 (American Institute of Aeronautics and Astronautics, 2014).
Verelst, G. et al. Innovative system architecture to reach the terabit/s satellite. In31st AIAA International Communications Satellite Systems Conference(American Institute of Aeronautics and Astronautics, 2013).
Fuchs, C.&Moll, F. Ground station network optimization for space-to-ground optical communication links.J. Optical Commun. Netw.7, 1148–1159 (2015)..
Poulenard, S., Crosnier, M.&Rissons, A. Ground segment design for broadband geostationary satellite with optical feeder link.J. Optical Commun. Netw.7, 325–336 (2015)..
Bloom, S. et al. Understanding the performance of free-space optics [Invited].J. Optical Netw.2, 178–200 (2003)..
Jing, Q. F., Liu, D. M.&Tong, J. C. Study on the scattering effect of terahertz waves in near-surface atmosphere.IEEE Access6, 49007–49018 (2018)..
Amarasinghe, Y. et al. Scattering of terahertz waves by snow.J. Infrared Millim. Terahertz Waves41, 215–224 (2020)..
Norouzian, F. et al. Rain attenuation at millimeter wave and low-THz frequencies.IEEE Trans. Antennas Propag.68, 421–431 (2020)..
Schneider, T. et al. Link budget analysis for terahertz fixed wireless links.IEEE Trans. Terahertz Sci. Technol.2, 250–256 (2012)..
Al-Gailani, S. A., Mohammad, A. B.&Shaddad, R. Q. Enhancement of free space optical link in heavy rain attenuation using multiple beam concept.Optik124, 4798–4801 (2013)..
Kim, I. I., McArthur, B.&Korevaar, E. J. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. InProceedings of SPIE 4214, Optical Wireless Communications III, 4214, 26–37, (SPIE, 2001).
Saleem, A. M. et al. Characterization of fog and snow attenuations for free-space optical propagation.J. Commun.4, 533–545 (2009)..
Calvo, R. M. et al. Optical technologies for very high throughput satellite communications. InProceedings of SPIE 10910, Free-Space Laser Communications XXXI, 10910, 109100W (SPIE, 2019).
Calvo, R. M. et al. Optical feeder links for very high throughput satellites–system perspectives. InKa and Broadband Communications, Navigation and Earth Observation Conferencehttps://elib.dlr.de/99360/https://elib.dlr.de/99360/(2015)..
Lutz, E. Achieving a terabit/s GEO satellite system. In19th Ka and Broadband Communications,Navigation and Earth Observation Conferencehttps://elib.dlr.de/85339/https://elib.dlr.de/85339/(2013)..
Khalighi, M. A.&Uysal, M. Survey on free space optical communication: a communication theory perspective.IEEE Commun. Surv. Tutor.16, 2231–2258 (2014)..
Park, E. A., Cornwell, D.&Israel, D. NASA's next generation ≥100 Gbps optical communications relay. In2019 IEEE Aerospace Conference, 1–9 (IEEE, 2019).
Smutny, B. et al. 5.6Gbps optical intersatellite communication link. InProceedings of SPIE 11993, Free-Space Laser Communications XXXIV, 719906, 719906 (SPIE, 2009).
Boroson, D. M. et al. Overview and results of the Lunar Laser Communication Demonstration. InProceedings of SPIE 8971, Free-Space Laser Communication and Atmospheric Propagation XXVI, 8971, 89710S (SPIE, 2014).
Toyoshima, M. Recent trends in space laser communications for small satellites and constellations.J. Lightwave Technol.39, 693–699 (2021)..
Vasko, C. et al. HydRON: internet backbone beyond the cloud(s). InProceedings of SPIE 11993, free-space laser communications XXXIV, 11993, 119930K (SPIE, 2022).
Schieler, C. M. et al. TBIRD 200-Gbps CubeSat Downlink: System Architecture and Mission Plan. In2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), 181–185 (IEEE, 2022).
Mitchell, J. 2022 NASA optical communications update. In5th Annual Directed Energy Symposium(NASA, 2022).
Sodnik, Z. et al. Optical feeder-link between ESA's optical ground station and Alphasat. InProceedings of SPIE 11852, International Conference on Space Optics — ICSO 2021, 11852, 1185218 (SPIE, 2021).
Carrasco-Casado, A. Mata-Calvo, R. Space optical links for communication networks. InSpringer Handbook of Optical Networks(eds Mukherjee, B. et al. ) 1057–1103 (Springer, 2020).
Fuchs, C.&Schmidt, C. Update on DLR's OSIRIS program. InProceedings of SPIE 11180, International Conference on Space Optics - ICSO 2018, 11180, 111800I (SPIE, 2019).
Carrasco-Casado, A. et al. Intersatellite-link demonstration mission between CubeSOTA (LEO CubeSat) and ETS9-HICALI (GEO Satellite). In2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS), 1–5 (IEEE, 2019).
Satoh, Y. et al. Current status of Japanese optical data relay system (JDRS). In2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), 240–242 (IEEE, 2017).
Luzhanskiy, E. et al. Overview and status of the laser communication relay demonstration. InProceedings of SPIE 9739, Free-Space Laser Communication and Atmospheric Propagation XXVIII, 9739, 97390C (SPIE, 2016).
Gregory, M. et al. Inter-satellite and satellite-ground laser communicationlinks based on homodyne BPSK. InProceedings of SPIE 7587, Free-Space Laser Communication Technologies XXII, p. 75870E (SPIE, 2010).
Shi, Y. Q. et al. Interleaving for combating bursts of errors.IEEE Circuits Syst. Mag.4, 29–42 (2004)..
Dimitrov, S. et al. Digital modulation and coding for satellite optical feeder links. In2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC), 150–157 (IEEE, 2014).
Greco, J. A. Design of the high-speed framing, FEC, and interleaving hardware used in a 5.4km free-space optical communication experiment. InProceedings of SPIE 7464, Free-Space Laser Communications IX, 7464, 746409 (SPIE, 2009).
Dochhan, A. et al. 13.16 Tbit/s free-space optical transmission over 10.45 km for geostationary satellite feeder-links. InPhotonic Networks; 20th ITG-Symposium, 1–3 (VDE, 2019).
Fernandes, M. A., Monteiro, P. P.&Guiomar, F. P. Single-wavelength terabit FSO channel for datacenter interconnects enabled by adaptive PCS. In2021 Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (IEEE, 2021).
Guiomar, F. P. et al. Coherent free-space optical communications: opportunities and challenges.J. Lightwave Technol.40, 3173–3186 (2022)..
Guiomar, F. P. et al. Adaptive probabilistic shaped modulation for high-capacity free-space optical links.J. Lightwave Technol.38, 6529–6541 (2020)..
Lorences-Riesgo, A. et al. 200 G outdoor free-space-optics link using a single-photodiode receiver.J. Lightwave Technol.38, 394–400 (2020)..
Matsuda, K. et al. Demonstration of a real-time 14 Tb/s multi-aperture transmit single-aperture receive FSO system with class 1 eye-safe transmit intensity.J. Lightwave Technol.40, 1494–1501 (2022)..
Mitra, P. P.&Stark, J. B. Nonlinear limits to the information capacity of optical fibre communications.Nature411, 1027–1030 (2001)..
Kikuchi, K.&Tsukamoto, S. Evaluation of sensitivity of the digital coherent receiver.J. Lightwave Technol.26, 1817–1822 (2008)..
Karlsson, M.&Agrell, E. Which is the most power-efficient modulation format in optical links?Opt. Express17, 10814–10819 (2009)..
Lafon, R. et al. NASA's Low-Cost Optical Terminal (LCOT) at Goddard Space Flight Center. InProceedings of SPIE 12413, Free-Space Laser Communications XXXV, 12413, 124130V, (SPIE, 2023).
Cornwell, D. M. NASA's optical communications program for 2017 and beyond. In2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), 10–14 (IEEE, 2017).
Wright, M. W. Uplink and downlink laser transmitters for deep space optical communications. InApplications of Lasers for Sensing and Free Space Communications 2022, p. LsTh2C. 2 (Optica Publishing Group, 2022).
Stevens, M. L. et al. Optical homodyne PSK demonstration of 1.5 photons per bit at 156 Mbps with rate-½ turbo coding.Opt. Express16, 10412–10420 (2008)..
Kakarla, R., Schröder, J.&Andrekson, P. A. One photon-per-bit receiver using near-noiseless phase-sensitive amplification.Light Sci. Appl.9, 153 (2020)..
Kakarla, R. et al. Power efficient communications employing phase sensitive pre-amplified receiver.IEEE Photonics Technol. Lett.34, 3–6 (2022)..
Dash, S. S. et al. Constellation modulation - an approach to increase spectral efficiency.Opt. Express25, 16310–16331 (2017)..
Hardy, J. W. Active optics: a new technology for the control of light.Proc. IEEE66, 651–697 (1978)..
Vorontsov, M. A., Carhart, G. W.&Ricklin, J. C. Adaptive phase-distortion correction based on parallel gradient-descent optimization.Opt. Lett.22, 907–909 (1997)..
Vedrenne, N. et al. Performance analysis of an adaptive optics based optical feeder link ground station. InInternational Conference on Space Optics — ICSO 2021(SPIE, 2021).
Goldstein, I., Miles, P. A.&Chabot, A. Heterodyne measurements of light propagation through atmospheric turbulence.Proc. IEEE53, 1172–1180 (1965)..
Fink, D.&Vodopia, S. N. Coherent detection SNR of an array of detectors.Appl. Opt.15, 453–454 (1976)..
Ma, J. et al. Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence.Appl. Opt.54, 7575–7585 (2015)..
Fried, D. L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures.J. Optical Soc. Am.56, 1372–1379 (1966)..
Bonnefois, A. M. et al. Feasibility demonstration of AO pre-compensation for GEO feeder links in a relevant environment.Opt. Express30, 47179–47198 (2022)..
Fusco, T. et al. NAOS on-line characterization of turbulence parameters and adaptive optics performance.J. Opt. A Pure Appl. Opt.6, 585–596 (2004)..
Hu, Q. et al. Ultrahigh-net-bitrate 363 Gbit/s PAM-8 and 279 Gbit/s polybinary optical transmission using plasmonic Mach-Zehnder modulator.J. Lightwave Technol.40, 3338–3346 (2022)..
Védrenne, N. et al. Adaptive optics pre-compensation for GEO feeder links: towards an experimental demonstration. In2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), 77–81 (IEEE, 2017).
Josten, A. et al. Modified godard timing recovery for non integer oversampling receivers.Appl. Sci.7, 655 (2017)..
Johannisson, P., Sjödin, M.&Karlsson, M. A modified CMA for PS-QPSK. InAdvanced photonics, p. SPTuB3 (Optica Publishing Group, 2011).
Pincemin, E. et al. Novel blind equalizer for coherent DP-BPSK transmission systems: theory and experiment.IEEE Photonics Technol. Lett.25, 1835–1838 (2013)..
Osborn, J. et al. Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT.Monthly Not. R. Astronomical Soc.478, 825–834 (2018)..
Sprung, D.&Sucher, E. Characterization of optical turbulence at the solar observatory at the Mount Teide, Tenerife. InProceedings of SPIE 8890, Remote Sensing of Clouds and the Atmosphere XVIII; and Optics in Atmospheric Propagation and Adaptive Systems XVI, 8890, 889015 (SPIE, 2013).
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution