1.State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
2.Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen 518129, China
3.State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Yujie Chen (chenyj69@mail.sysu.edu.cn)
Liangjia Zong (zongliangjia@huawei.com)
Published:31 July 2023,
Published Online:19 June 2023,
Received:04 February 2023,
Revised:17 May 2023,
Accepted:03 June 2023
Scan QR Code
Zhu, Z. X. et al. Metasurface-enabled polarization-independent LCoS spatial light modulator for 4K resolution and beyond. Light: Science & Applications, 12, 1391-1400 (2023).
Zhu, Z. X. et al. Metasurface-enabled polarization-independent LCoS spatial light modulator for 4K resolution and beyond. Light: Science & Applications, 12, 1391-1400 (2023). DOI: 10.1038/s41377-023-01202-6.
With the distinct advantages of high resolution
small pixel size
and multi-level pure phase modulation
liquid crystal on silicon (LCoS) devices afford precise and reconfigurable spatial light modulation that enables versatile applications ranging from micro-displays to optical communications. However
LCoS devices suffer from a long-standing problem of polarization-dependent response in that they only perform phase modulation on one linear polarization of light
and polarization-independent phase modulation—essential for most applications—have had to use complicated polarization-diversity optics. We propose and demonstrate
for the first time
an LCoS device that directly achieves high-performance polarization-independent phase modulation at telecommunication wavelengths with 4K resolution and beyond by embedding a polarization-rotating metasurface between the LCoS backplane and the liquid crystal phase-modulating layer. We verify the device with a number of typical polarization-independent application functions including beam steering
holographical display
and in a key optical switching element - wavelength selective switch (WSS)
demonstrating the significant benefits in terms of both configuration simplification and performance improvement.
Zhang, Z. C., You, Z.&Chu, D. P. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices.Light Sci. Appl.3, e213 (2014)..
Lazarev, G. et al. Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics.Opt. Express27, 16206–16249 (2019)..
Vettese, D. Microdisplays: liquid crystal on silicon.Nat. Photonics4, 752–754 (2010)..
Yin, K. et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications.Light Sci. Appl.11, 161 (2022)..
Blanche, P. A. Holography, and the future of 3D display.Light Adv. Manuf.2, 446–459 (2021)..
Cai,X. L. et al. Integrated compact optical vortex beam emitters.Science338, 363–366 (2012)..
Wen, Y. H. et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes.Phys. Rev. Lett.120, 193904 (2018)..
Forbes, A., De Oliveira, M.&Dennis, M. R. Structured light.Nat. Photonics15, 253–262 (2021)..
Dholakia, K.&Čižmár, T. Shaping the future of manipulation.Nat. Photonics5, 335–342 (2011)..
Gieseler, J. et al. Optical tweezers — from calibration to applications: a tutorial.Adv. Opt. Photonics13, 74–241 (2021)..
Ma, Y. R. et al. Recent progress of wavelength selective switch.J. Lightw. Technol.39, 896–903 (2021)..
Wang, M. et al. LCoS SLM study and its application in wavelength selective switch.Photonics4, 22 (2017)..
Marom, D. M. et al. Survey of photonic switching architectures and technologies in support of spatially and spectrally flexible optical networking.J. Opt. Commun. Netw.9, 1–26 (2017)..
Hampson, K. M. et al. Adaptive optics for high-resolution imaging.Nat. Rev. Methods Primers1, 68 (2021)..
Salter, P. S.&Booth, M. J. Adaptive optics in laser processing.Light Sci. Appl.8, 110 (2019)..
Jenness, N. J. et al. A versatile diffractive maskless lithography for single-shot and serial microfabrication.Optics Express18, 11754–11762 (2010)..
Shusteff, M. et al. One-step volumetric additive manufacturing of complex polymer structures.Sci. Adv.3, eaao5496 (2017)..
Srivastava, A. K., Chigrinov, V. G.&Kwok, H. S. Ferroelectric liquid crystals: excellent tool for modern displays and photonics.J. Soc. Info. Disp.23, 253–272 (2015)..
Chen, X. et al. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: Polar domains and striking electro-optics.Proc. Natl Acad. Sci. USA117, 14021–14031 (2020)..
Meiboom, S. et al. Theory of the blue phase of cholesteric liquid crystals.Phys. Rev. Lett.46, 1216–1219 (1981)..
Hyman, R. M. et al. Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device.Appl. Opt.53, 6925–6929 (2014)..
Lin, Y. H. et al. Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure.Opt. Express13, 8746–8752 (2005)..
He, Z. Q. et al. Polarization-independent phase modulators enabled by two-photon polymerization.Opt. Express25, 33688–33694 (2017)..
Moore, J. R. et al. The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM.IEEE Photonics Technol. Lett.20, 60–62 (2008)..
Apter, B., Efron, U.&Bahat-Treidel, E. On the fringing-field effect in liquid-crystal beam-steering devices.Appl. Opt.43, 11–19 (2004)..
Dorrah, A. H.&Capasso, F. Tunable structured light with flat optics.Science376, eabi6860 (2022)..
Li, S. Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface.Science364, 1087–1090 (2019)..
Dorrah, A. H. et al. Metasurface optics for on-demand polarization transformations along the optical path.Nat. Photonics15, 287–296 (2021)..
Xie, Y. Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions.Nat. Nanotechnol.15, 125–130 (2020)..
Joo, W. J. et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch.Science370, 459–463 (2020)..
Zhao, Y.&Alù, A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates.Nano Lett.13, 1086–1091 (2013)..
Gu, T. etal. Reconfigurable metasurfaces towards commercial success.Nat. Photonics17, 48–58 (2023)..
Peng, Z. H. et al. Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds.Liq. Cryst.43, 276–284 (2016)..
Gauza, S. et al. High birefringence and high resistivity isothiocyanate-based nematic liquid crystal mixtures.Liq. Cryst.32, 1077–1085 (2005)..
Khoo, I.Liquid Crystals(John Wiley&Sons, Hoboken, 2022).
Lord, A. et al. Evolution from wavelength-switched to flex-grid optical networks. InElastic Optical Networks(eds. López, V.&Velasco, L.) 7–30 (Springer, Cham, 2016).
Chigrinov, V. G., Kozenkov, V. M.&Kwok, H. S.Photoalignment of Liquid Crystalline Materials: Physics and Applications(John Wiley&Sons, Hoboken, 2008).
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution